Enhanced Antibacterial Activity of MGOTM Manuka Honey complexed with a- cyclodextrin (Manuka Honey with CycloPowerTM)
DOI:
https://doi.org/10.31989/ffhd.v4i5.13Abstract
Background: Manuka honey is recognized for it’s health-promoting properties and it’s use in medicine is well documented. However, the actions of Manuka honey are limited by rapid digestion and the inactivation of bioactive components such as methylglyoxal. Cyclodextrins are naturally occurring glucose rings that improve stability and bioactivity of products. This study investigates the tolerability and bioactivity of a-cyclodextrin-complexed Manuka honey called Manuka Honey with CycloPower TM.
Methods: The antibacterial properties of Manuka honey complexed with a-cyclodextrin (Manuka honey with CyclopowerTM) were compared to uncomplexed Manuka honey against a range of common organisms using standard measurements of minimum inhibitory (MIC) and bactericidal (MBC) concentrations. Time course growth measurements were determined using a sublethal concentration of 2% w (honey solids)/v and measuring the area under the growth curve.
Results: In tube MIC assays, Manuka honey completely inhibited Staphylococcus aureus (MSSA and MRSA), Streptococcus pyogenes, Helicobacter pylori and Moraxella catarrhalis at concentrations of 10% w/v or less, with MIC values decreasing as the methylglyoxal content of the honeys increased from 100 to 550 mg/kg. MIC values at a given methlyglyoxal level were also decreased for S. pyogenes, M. catarrhalis and H. pylori by complexing the Manuka honey with a-cyclodextrin. Pseudomonas aeruginosa was not inhibited by any of the Manuka honey or Cyclopower treatments at the concentrations tested (2-10% w/v). Manuka honey with CyclopowerTM had an increased bacteriostatic action against S. aureus, MRSA and P. aeruginosa compared with Manuka honey.
Conclusions: This study concludes that Manuka honey is an effective antibacterial agent that can be enhanced by complexing with a-cyclodextrin.
Keywords: Manuka honey, methylglyoxal, a-cyclodextrin, antimicrobial
Downloads
Published
Issue
Section
License
Authors retain the copyright of their articles and grant the Functional Food Center (FFC) and its journals the right of first publication under the terms of the Creative Commons Attribution 4.0 International License.
This license permits unrestricted use, distribution, and reproduction in any medium, including commercial use, provided the original author(s) and source are properly credited. Authors may post and share their published work freely, provided that the original publication in this journal is acknowledged.
By submitting to this journal, authors confirm that their manuscripts are original, not under consideration elsewhere, and that they hold the necessary rights to grant this license. The Functional Food Center encourages open scientific exchange and allows derivative and extended works, provided attribution to the original publication is maintained.