Synthesis and neurotropic activity of new derivatives of some amino acid hydantoins and their lithium salts
DOI:
https://doi.org/10.31989/bchd.v7i6.1357Abstract
Background: Amino acid hydantoins are widely used in various fields, particularly in pharmacy. For example, phenytoin is used to treat generalized epileptic seizures.
Objective: This study aims to investigate the neurotropic properties of new amino acid hydantoin derivatives in order to identify new anticonvulsants with psychotropic properties.
Methods: The compounds mentioned exhibited anticonvulsant properties that were evaluated through a series of tests: maximal electric shock, pentylenetetrazole, thiosemicarbazide, picrotoxin, strychnine, nicotine, and camphor convulsions on outbred mice. The psychotropic effects of the compounds were assessed through various tests,
including the elevated plus maze (EPM), forced swimming, and open field tests. Additionally, their effect on the activity of monoamine oxidase (MAO) was investigated under in vitro conditions. The neurotoxic effect of these compounds was further examined by conducting the ''rotating rod'' test on mice.
Results: The five studied compounds, which are byproducts of amino acid hydantoins, along with Phenytoin and their lithium salts, display neurotropic properties, demonstrating anticonvulsant and psychotropic effects. Compounds that inhibit clonic pentylenetetrazole, maximal electroshock generalized tonic convulsions, nicotine, and kamphora
convulsions, as well as exhibiting antithiosemicarbazide action in animals, display pronounced anxiolytic and behavior-activating effects across various internationally recognized models. Simultaneously, the compounds show antidepressant (evidenced by the "forced swimming" model) and anti-MAO effects. The compounds did not
demonstrate muscle relaxant effects in the doses examined. In certain aspects of their neurotropic properties, the compounds outperformed drugs currently used in the clinic, including Phenytoin, Ethosuximide, and lithium chloride
(antimanic drug), among others.
Conclusion: Hydantoins derived from DL-tryptophan, DL-β-phenyl-α-alanine, and Phenytoin, along with their corresponding lithium salts, were synthesized. Both the anticonvulsant and psychotropic effects of these substances have been thoroughly studied. In several models, compounds that inhibit maximal electroshock convulsions in animals and clonic pentylenetetrazole also display anxiolytic and behavior-activating effects. These compounds also exhibit antidepressant and anti-MAO effects. The investigated compounds can be used in medicine, as drugs, in the treatment of epilepsy with psychotropic disorders.
Keywords: antiepileptic drugs, derivatives of amino acid, lithium salts, neurotropic activity, pentylenetetrazole convulsions.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 FFC/Bioactive Compounds in Health and Disease

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Any manuscripts or substantial parts of it, submitted to the journal must not be under consideration by or previously published in any other journal or citable form. Authors are required to ensure that no material submitted as part of a manuscript infringes existing copyrights or the rights of a third party. In submitting one's article in any form, the author has assigned the FFC publishing rights and has agreed to an automatic transfer of the copyright to the publisher. This is so that the FFC may create print option journals, for example, at the FFC’s discretion. If the author wishes to distribute their works by means outside of the FFC, for example within their community, they will have to place a request.
Correspondence concerning articles published in Functional Foods in Health and Disease is encouraged. While derivative works (adaptations, extensions on the current work, etc.) are allowed, distribution of the modified material is not allowed without permission from the FFC.