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ABSTRACT 

Background: Obesity rates have increased globally during the last half, and with it there has been increased 

interest in herbs and dietary supplements for weight management 

 

Objectives: The purpose of the present review is to examine evidence for the efficacy and safety of herbal 

preparations including cinnamon, capsaicin, black pepper and curcumin, which are popularly used for weight 

reduction. 

 

Methods: A list of herbs and dietary supplements frequently used in weight management was developed by 

reviewing both scientific and popular literature. Included herbs/supplements were evaluated in terms of pre-

clinical and clinical studies. 

 

Results: Included in the review were cinnamon, capsaicin, black pepper and curcumin. For all of the included 

herbs, proof of concept could be demonstrated. Few well-designed, adequately powered clinical trials were 

available but those that were suggested efficacy. 

 

Conclusions: While underlying metabolic/physiological mechanisms have been identified in pre-clinical 

studies, human studies of efficacy are sparse. An indication towards efficacy in humans exists for all of these 

products; however, treatment guidelines cannot be developed until better quality randomized clinical trials 

can provide clear findings. 
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BACKGROUND 

Obesity rates have steadily increased over the last 

40 years and are projected to continue to climb 

over the next 30 years (1). While obesity is 

positively associated with Gross Domestic Product 

Per Capita (GDPPC), the increasing rate in obesity 

prevalence has  shown to be inversely associated 

with this measure, suggesting that most obesity 

incidence will occur in lower- and middle-income 

nations rather than higher income nations (2).   

Classified by the American Medical 

Association as a disease (3), obesity is also a risk 

factor for many noncommunicable diseases 

including diabetes (4), hypertension, (5) coronary 

artery disease (6) and certain cancers (7). This lends 

an urgency to treating this condition. 

Lifestyle management of obesity, which is 

appropriate for all classes of this condition, includes 

a balanced, calorie restricted diet, increased 

exercise (particularly aerobic) and 

cognitive/behavioral therapy (8).   Many individuals 

augment lifestyle interventions with dietary 

supplements and herbal preparations believed to 

be efficacious in enhancing weight loss (9).  Indeed, 

the increase in obesity prevalence has been 

accompanied by an increase in the use of herbal 

and dietary supplements for weight reduction (10). 

But among dietary supplements and herbs most 

prone to causing adverse health outcomes are 

those intended for weight loss (11), while evidence 

supporting the efficacy of these preparations for 

has not been well established.  Nevertheless, herbal 

preparations are often recommended in the 

popular literature. We focused on the herbs most 

frequently cited in these articles: cinnamon, 

capsaicin, black pepper and curcumin. These herbs 

appeared on several “Best herbs for weight loss” 

lists in both print and online magazines and 

newspaper feature articles directed at the general 

public.  

The purpose of the present review is to 

examine evidence for the efficacy and safety of 

herbal preparations popularly used for weight 

reduction.  

 

METHODS 

The present narrative review seeks to evaluate the 

safety and efficacy of the following herbs popularly 

conceived of as appropriate for weight reduction: 

cinnamon, capsaicin, black pepper and curcumin. 

 

Definitions 

Popular literature: print and electronic media 

intended for the non-medical, nutrition or life 

science professional. This included magazine and 

newspaper feature articles in which herbs and 

weight control were simultaneously discussed. 

 

Popularly used herbs: A review of the popular 

literature revealed many “best herbs for weight 

loss” lists.  These lists were recorded, and the most 

frequently repeated herbs were those selected for 

inclusion in the present review. 

 

Weight loss: The definition of weight loss was not 

altered from that used by the authors of the 

reviewed publications. This was necessary since 

several of the studies reviewed examined 
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mechanism, some used animal models and some 

used human subjects. 

 

Search Engines 

The present review sought to identify the safety 

and efficacy of popularly used herbs for weight loss.  

To this end, the following search engines were 

employed: PubMed; Medline Plus: Herbs and 

Dietary Supplements; ResearchGate; and EMBASE. 

Date restrictions were not included, but only 

English language publications were included. For 

each herb cell studies, animal models and human 

subject research were included. Date restrictions 

were not utilized, but included studies had to be 

published in the English language. 

 

Cinnamon 

Cinnamomum is a genus that includes 

approximately 250 species, the most medically and 

economically important of which are C. verum (also 

known as C. zeylanicum) (12) and C. cassia (13).   In 

addition to its use as a in food preparation, 

cinnamon has been used in traditional medicine to 

treat diarrhea and other gastrointestinal symptoms 

(14), menstrual cramps (15), rheumatoid arthritis 

(16) microbial infection (17) and type 2 diabetes 

(18).   

Pharmacologically active components 

identified in cinnamon include cinnamic acid, a 

polyphenol that can inhibit protein kinases 

essential in cell signaling networks (19). 

Cinnamaldehyde, another active compound in 

cinnamon, has antimicrobial (20), anti-

inflammatory and anti-proliferative bioactivity (21).  

Another important compound in cinnamon is 

eugenol, which, like cinnamaldehyde, has both 

antibacterial and anti-proliferative properties, as 

well as antioxidant and anti-inflammatory activity 

(22). Coumarin has anti-coagulant, anti-

proliferative, anti-microbial, anti-inflammatory and 

antioxidant properties (23).  These bioactive 

properties may modify chronic disease risk (24). 

In 2013, the American Medical Association 

defined obesity as a chronic disease requiring 

medical intervention (25).  Cinnamon and its 

compounds have been studied as a potential 

treatment for obesity. 

 

Cell studies: Cinnamon has long been known to 

potentiate insulin activity, a characteristic originally 

attributed to chromium content; however, this 

concept was subsequently discarded when an 

association between chromium content and insulin 

activity was not detected (26). On the other hand, 

aqueous cinnamon fractions have been shown to 

inhibit protein tyrosine phosphatase 1, which 

dephosphorylates the insulin receptor kinase. 

These fractions also activate insulin receptor kinase 

autophosphorylation (27).  In another study, 

hydroxychalcone from cinnamon was shown to 

stimulate glucose uptake. The insulin cascade 

appears to have been activated by the cinnamon-

derived hydroxychalcone phosphorylation of the 

insulin receptor (28).  Indeed, insulin receptor 

phosphorlylation is an established mechanism 

through which glycemic control can be achieved 

(29).  Insulin signaling stimulates glucose uptake in 

human skeletal muscle; however, obesity is 

characterized by defects in this mechanism (30). 

The ability of cinnamon to phosphorylate the 

insulin receptor could, then, improve insulin 

resistance and the metabolic milieu associated with 

obesity.   

Another mechanism through which cinnamon 

may exert anti-obesity action is transient receptor 

potential ankyrin 1 (TRPA1).  TRPA1 has been 

shown to improve weight control, insulin and 

glucose homeostasis and thermogenesis (31).   In an 

in vitro incubation model, cinnamon has been 

shown to upregulate both TRPA1 and insulin 
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receptor genes, improving insulin sensitivity while 

simultaneously reducing ghrelin secretion (32).   

Polyphenolic compounds in cinnamon are 

accredited with inhibiting intestinal lipid absorption 

(33), lipolysis and lipogenesis (34).  Cinnamon has 

also been shown to increase thermogenesis and 

inhibit adipocyte differentiation, resulting in 

reduced adiposity (35).  

 

Animal studies: Animal studies have generally 

supported the role of cinnamon in improving insulin 

resistance, diabetes and obesity.  For example, 

cinnamon-derived phytochemicals including 

proanthocyanidins, have been shown to lower 

blood glucose levels in streptozotocin-induced 

diabetic mice (36).  Peroxisome proliferator-

activated receptors (PPAR) alpha and gamma were 

the mechanisms through which cinnamon water 

extract reduced blood glucose and serum lipids 

while mitigating insulin resistance and obesity-

related type 2 diabetes in mice (37).  Consistent 

with these findings, insulin-resistant rats fed a high-

fructose, high-fat diet supplemented with 

cinnamon powder exhibited improvement of 

impaired insulin-signaling gene expression (38). 

Improved insulin metabolism was also observed in 

metabolically normal male Wistar rats that were 

fed cinnamon extract (39).  In obese, diabetic rats, 

cinnamon has been shown to significantly reduce 

body weight and fat mass in addition to blood 

glucose and leptin levels, while also normalizing the 

serum lipid profile (40).  

A study examined the metabolic influence of 

cinnamon bark extract or grape pomace on mice 

that were fed a high fat diet. Both supplements 

significantly decreased fat mass gain and adipose 

tissue inflammation (41). 

Taken together, the animal models echo the 

findings of the in vitro studies; namely, that through 

a variety of mechanisms, cinnamon can improve 

insulin and glucose homeostasis, reduce adipocyte 

differentiation and improve thermogenesis, all of 

which are associated with reduced body weight. 

Finally, it has been shown to decrease body fatness 

and its accompanying inflammation. 

 

Human studies: Cinnamon has been studied in 

human subjects in a number of clinical trials. 

Mirroring a phase 1 trial, seven healthy young 

males underwent an oral glucose tolerance test 

(OGTT) following ingestion of 5g placebo, 5g 

cinnamon, and 12 hours post ingestion of 5g 

cinnamon. Area under the curve (AUC) for OGTT 

was significantly smaller immediately following and 

12 hours after cinnamon ingestion compared to the 

AUC following placebo ingestion (42).  Another 

study involving healthy young adult males 

randomized participants to 3g/day cinnamon or 

placebo. After two weeks, cinnamon-treated 

subjects had significantly reduced AUC for OGTT 

and significantly improved insulin sensitivity (43). 

These findings were corroborated by yet another 

study conducted using healthy adults who 

consumed rice pudding with 1g, 3g or no cinnamon.  

At the 120-minute mark, AUC was significantly 

lower following 3g cinnamon intake compared to 

either of the other two conditions; further, 

postprandial serum insulin was reduced while GLP-

1 concentrations were increased in the 3g 

cinnamon group (44).  Together, these findings 

suggest that cinnamon is capable of altering glucose 

homeostasis in healthy adults.   

One of the earliest clinical trials in patients 

with diabetes recruited 60 participants and 

randomized them into six groups, three of which 

were treated with 1, 3 or 6g/day cinnamon while 

the other three were treated with matching 

placebo capsules. At the 40-day follow-up point, all 

doses of cinnamon had produced significantly lower 

fasting blood glucose levels than the corresponding 

placebo group. Serum lipids were also more 

normalized in each of the cinnamon groups 
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compared to corresponding controls. 

Unfortunately, anthropometric measures were not 

recorded (45).  These findings were partially 

confirmed in a randomized clinical trial in which 79 

adults with non-insulin treated type 2 diabetes 

were randomized to treatment with 3g/day 

cinnamon or a matching placebo. After four months 

of follow-up, the cinnamon-treated group had a 

significantly greater reduction-from-baseline in 

fasting glucose compared to the placebo group; 

however, neither HbA1c nor lipid profile differed by 

treatment assignment (46).  By contrast, a clinical 

trial conducted in 25 postmenopausal women with 

type 2 diabetes did not detect any by-group 

difference in fasting glucose, serum lipids or insulin 

sensitivity. This trial used a 1.5g/day cinnamon dose 

or a placebo for a period of 6 weeks (47).  

A UK clinical trial of adults with type 2 diabetes 

randomized participants to treatment with 2g 

cinnamon or placebo for a duration of 12 weeks. At 

the end of the follow-up period, participants in the 

cinnamon group had significant reductions in 

HbA1c, fasting plasma glucose, waist circumference 

and BMI. Both systolic and diastolic blood pressure 

were also significantly reduced compared to the 

placebo group (48).  Systolic blood pressure 

appeared to be reduced in patients with type 2 

diabetes treated with 1.2g/day cinnamon vs. 

placebo; however, when further statistical 

adjustment was performed, this difference was 

attributable to regression to the mean in the 

cinnamon group, and not an actual treatment 

effect(49). 

A study of 204 type 2 diabetes patients 

randomized participants to one of four conditions 

in which black tea was supplemented with 3g of 

either cinnamon, saffron, or ginger or an un-

supplemented tea serving as a placebo control. 

After eight weeks, participants in all spice-

supplemented groups had significant normalization 

of lipid profile compared to the placebo group; 

however, only cinnamon-supplemented 

participants had significant reductions in fasting 

blood glucose (50).  

Another study randomized participants to 

take 1g/day cinnamon, 1g/day whortleberry or 

placebo supplements for 90 days. Both supplement 

groups exhibited reductions in measures of glucose 

homeostasis; however, only the subjects in the 

cinnamon group had a reduction in BMI (51). 

Similarly, a randomized clinical trial of consuming 

3g/day cinnamon vs. a placebo in Asian Indians with 

metabolic syndrome demonstrated significant 

reductions in waist circumference, waist-to-hip 

ratio and BMI in addition to improved glucose 

homeostasis in cinnamon-treated vs. placebo 

treated participants (52). 

While individual studies are convincing, meta-

analysis forms the ultimate measure of efficacy of 

an intervention. To that end, a recent meta-analysis 

evaluated the efficacy of cinnamon on 

anthropometric and glycemic outcomes. A total of 

18 studies were included in the meta-analysis, 

which confirmed that cinnamon supplementation 

was associated with significant reductions in fasting 

blood glucose and HbA1c.  Measures of insulin 

resistance and anthropometric measures including 

body weight, BMI and waist circumference did not 

significantly differ between the cinnamon-treated 

and placebo-treated groups (53). 

Despite this analysis, studies of the effect of 

cinnamon supplementation on anthropometric, 

glucose homeostasis, lipid profile and 

hemodynamic measures are planned (54). 

Improving the quality of intervention studies and 

the number of participants will eventually provide a 

definitive answer regarding the clinical efficacy of 

cinnamon on these parameters. 

Capsaicin 

The chemical compound capsaicin (8-methyl-N-

vanillyl-6-nonenamide) is the active component of 

chili peppers. It is an alkaloid, hydrophobic, 
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colorless, odorless compound, produced as a 

secondary metabolite, likely as a deterrent against 

certain herbivores and fungi. Capsaicin is an irritant 

for mammals, causing a sensation of burning in any 

tissue with which it comes in contact (55, 56). 

 

Cell Studies: Capsaicin is well-recognized as an anti-

inflammatory, antioxidant, antimicrobial and 

anticancer compound (57). Additionally, pre-clinical 

evidence suggests that capsaicin may have anti-

obesity and anti-diabetes properties (58-64). 

In tissue culture, for example, capsaicin 

efficiently induces apoptosis and inhibits 

adipogenesis in 3T3-1 preadipocytes and 

adipocytes (65, 66) 

 

Animal Studies: Studies in rats have shown that 

capsaicin decreases body weight. In rats fed a high 

fat diet supplemented with capsaicin, perirenal 

adipose tissue weight declined, oxygen 

consumption was greater and the respiratory 

quotient (RQ) increased while liver glycogen 

decreased, leading to metabolic alterations similar 

to those induced by epinephrine (67).    

Administration of a capsaicin analogue to 15-

week old obese Zucker Diabetic Fatty rats 

prevented further deterioration of glucose 

homeostasis.  When administered to 19-week-old 

overtly diabetic Zucker Diabetic Fatty rats, the 

capsaicin analogue improved glucose tolerance, 

increased insulin response and reduced dipeptidyl 

peptidase IV levels in plasma (68).  Three-month-

old male Wistar rats were fed a high fat obesogenic 

western diet and gavage-administered hesperidin, 

capsaicin, both or neither. Capsaicin 

supplementation decreased body fat gain, 

prevented insulin resistance, improved blood lipid 

profile, and prevented non-alcoholic 

steatohepatitis (69). 

Dietary capsaicin has been shown to reduce 

metabolic dysregulation in obese/diabetic mice by 

enhancing adiponectin and adiponectin receptor 

expression. Capsaicin activates transient receptor 

potential vanilloid-1, which has been shown to 

prevent adipogenesis through a neurogenic 

mechanism that modulates fat metabolism via 

sensory nerves.  Mice fed a high fat diet and 

supplemented with capsaicin had diminished body 

weight gain, reduced hepatic lipid accumulation 

and less insulin resistance (66). In male C57BL/6 

obese mice fed a high fat diet, capsaicin 

supplementation lowered fasting glucose, insulin 

and leptin and prevented impaired glucose 

tolerance.  Additionally, tumor necrosis factor-

alpha and interleukin (IL)-6 expression in adipose 

and liver declined, suggesting that capsaicin 

mitigates obesity-induced dysregulation of glucose 

metabolism by enhancing peripheral fatty acid 

oxidation and reducing systemic inflammation (70). 

 

Human Studies: Epidemiological research indicates 

that populations that consume capsaicin through 

food sources have lower obesity prevalence (71).  It 

has been suggested that daily capsaicinoid 

consumption may facilitate weight management 

through reductions in energy intake (72, 73)  

Several possible pathways have been 

identified through which capsaicin may influence 

body weight in humans.  These include energy 

intake, satiety, energy expenditure, inhibition of 

adipogenesis and alterations in brown adipose 

tissue. 

Capsaicinoids have been shown to increase 

glucagon-like peptide 1 (GLP-1), which is associated 

with weight loss in diabetic individuals, while 

decreasing ghrelin levels, thus reducing appetite 

(74,75). Additionally, by stimulating the 

sympathetic nervous system, specifically via 

catecholamines, capsaicin has been shown to 

reduce energy intake and increase energy 

expenditure (76).   
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Mean daily energy intake was significantly 

lower in both men and women who were 

randomized to receive either capsaicin capsules or 

capsaicin delivered in a beverage compared to 

those who received a placebo. Energy was reduced 

primarily through reduced fat intake. Satiety also 

increased in capsaicin-treated participants (72).  

Consistent with these findings, a systematic review 

and meta-analysis concluded that ingesting 

capsaicinoids with meals could reduce energy 

intake by 74 kcals on average (73). 

The effect of capsaicin on energy expenditure 

was demonstrated in a clinical trial where young 

adults with obesity were randomized to 2 mg/day 

capsaicin or placebo.  Subjects in the capsaicin and 

placebo groups did not differ in terms of energy 

intake or satiety, nor did they differ in terms of 

ghrelin, GLP1, peptide YY several hours after 

consuming their midday meal. However, post-

prandial resting energy expenditure (REE) increased 

significantly in the capsaicin group but not in the 

placebo group (77).   

A meta-analysis of studies designed to 

investigate the efficacy of capsaicin on energy 

expenditure and respiratory quotient (RQ) 

identified nine clinical trials of adequate quality.  An 

increase in energy expenditure was observed 

among participants with BMI > 25 kg/m2, but not in 

individuals with lower BMI values. The increase in 

energy expenditure was accompanied by a 

decrease in RQ, indicating enhanced fat oxidation 

(78).  Increased lipid oxidation was also 

demonstrated in a randomized clinical trial with 91 

overweight subjects who had lost weight on a very 

low-calorie diet that were in a weight maintenance 

phase. Subjects were randomized to receive 135 mg 

capsaicin/day or a placebo. The mean % weight 

regained during the three-month maintenance 

period did not significantly differ between 

treatment groups; however, the increase in RQ was 

significantly lower in the capsaicin group, 

demonstrating greater fat oxidation (79).  

Yet another pathway through which capsaicin 

may contribute to weight loss is through alterations 

to brown adipose tissue (BAT) activity and/or 

density.  In humans, a single oral dose of capsinoids 

has been shown to increase whole-body energy 

expenditure, suggesting that capsinoids not only 

activate but also recruit BAT in humans, meaning 

that beige cells in white adipose tissue are induced 

to differentiate into BAT (80-82).  This is consistent 

with animal studies that have shown a capsainoid-

induced increase in BAT thermogenesis and body 

fat mobilization via the sympathetic nervous 

system (83, 84). It has been proposed that capsaicin 

may influence energy expenditure via non-shivering 

thermogenesis, though the mechanism is not clear 

(69). 

In summary, studies suggest that adding 

capsaicinoids to the diet could facilitate weight 

management, supporting a role for capsaicin as an 

anti-obesity agent.   

 

Black Pepper  

Piper nigrum (Black pepper) belongs to the 

Piperaceae family which includes more than 1,000 

species with tropical and sub-tropical distribution 

(85). It is prepared by briefly cooking and drying the 

unripe fruits (86). Piper nigrum, with its pungent 

alkaloid piperine as a prominent active ingredient, 

holds rich phytochemicals that include volatile 

essential oils, oleoresins, phenolic acids, alkaloids 

such as chavicine, piperidine and piperetine and 

other constituents (85). Piper nigrum is widely used 

in foods for flavor, texture and preservation as well 

as in traditional medicine in many cultures around 

the world (87, 88). Piper nigrum has multi-targeting 

potential due to the anti-microbial, antioxidant, 

anti-inflammatory, anti-proliferative and neuro-

pharmacological activities of its bioactive derivates 

(86-88). However, the anti-obesity and anti-
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hyperglycemic activities remain largely unexplored 

in clinical trials (89, 90), precluding 

recommendation of its use for treating obesity. 

Evidence-based treatment guidelines require more 

studies in human subjects (85). 

 

Cell studies: Several in-vitro studies have 

demonstrated that Piper nigrum extracts can 

modulate thermogenesis, energy homeostasis, lipid 

accumulation, insulin sensitivity and glucose uptake 

through various signaling pathways (90-98). 

Because of these effects, Piper nigrum has been 

identified as a potential intervention for the 

treatment of obesity and type 2 diabetes (90-98). 

Piper nigrum extract and piperine have been 

shown to inhibit adipogenesis by down-regulating 

many genes associated with lipid accumulation 

during the differentiation of 3T3-L1 pre-adipocyte 

cells. Simultaneously, Piper nigrum has been shown 

to up-regulate various genes associated with lipid 

catabolic process (92).   

Trans-pellitorine, an alkamide present in Piper 

nigrum, has been shown to reduce lipid 

accumulation at the intermediate stages of 

adipogenesis and by inhibiting short-term fatty acid 

uptake in 3T3-L1 pre-adipocytes, likely through 

several signaling pathways (93). Piper nigrum 

extract increased glucose uptake by more than 

200% after the induction of insulin and suppressed 

lipid accumulation in a concentration-dependent 

manner in 3T3-L1 adipocytes cells (94).  

Alkamides isolated from Piper nigrum showed 

a significant inhibitory effect on the activity of rat 

liver microsomal acyl CoA diacylglycerol 

acyltransferase enzyme, a microsomal enzyme that 

plays a fundamental role in triglyceride synthesis 

(91). Piperine has been shown to increase ATPase 

activity in an in-vitro rabbit muscle assay by 

destabilizing the super-relaxed state of myosin 

heads, an effect which may enhance thermogenesis 

of resting muscles (90). When Indonesian medicinal 

plants were screened for their ability to inhibit the 

activity of protein tyrosine phosphatase 1B (PTP1B), 

a negative regulator of the leptin and insulin 

signaling pathways, water extract of Piper nigrum 

exhibited more than 70% inhibition at a 

concentration of 25 μg/mL (95). The ion channels 

transient receptor potential vanilloid 1 (TRPV1) and 

transient receptor potential ankyrin 1 (TRPA1) are 

involved in a wide range of processes, including 

energy and glucose homeostasis (31, 99) and 

possibly appetite (100). Several piperine analogs 

from Piper nigrum were found to be TRPV1 and 

TRPA1 agonists in human emryonic kidney 293 cells 

which expressed TRPV1 or TRPA1 (96-98).  

 

Animal studies: Rodents fed a high-fat diet (HFD) 

developed abdominal obesity (101). Previous 

studies have shown that increased adiposity leads 

to a systemic pro-inflammatory response (102, 103) 

that seems to promote and accentuate metabolic 

abnormalities (103, 104).  

Piper nigrum extracts have been shown to 

have anti-obesity and anti-hyperglycemic activities 

in both HFD-induced obese rats’ models (89, 101, 

105-110) and high carbohydrate, high fat diet 

(HCHF)-induced obese rats’ models (111, 112). Oral 

administration of 200 mg/kg ethyl acetate or 

aqueous extracts of Piper nigrum for 42 days 

markedly reduced the body weight, % fat, fat-free 

mass, glucose profile, lipid profile, liver marker 

enzymes and leptin, inhibited the activity of 

pancreatic lipase and increased adiponectin of HFD 

fed Sprague Dawley rats (101). Dietary intake of 

piperine (0.02%) for 8 weeks decreased body 

weight as well as weight of adipose tissue in HFD 

fed Wistar rats (110). Moreover, piperine intake has 

been shown to enhance digestive enzyme activity 

and promoted bile secretion; however, key hepatic 

lipogenic enzyme activity was concomitantly 

reduced (110). Thus, although consumption of 

piperine along with a HFD may facilitate the 
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digestion and absorption of dietary fats, it may also 

down-regulate lipogenesis in the body (110).  

Supplementing with HFD-fed Sprague Dawley 

rats with piperine (40 mg/kg) for 3 weeks resulted 

in reduced body weight, fat mass and improved 

lipid profile, with no change in food intake (109). In 

HFD-fed C57BL/6N mice supplemented with 

piperine (0.05%) for 10 weeks, body weight, visceral 

fat-pad, liver weight, plasma and hepatic lipid 

levels were all decreased while insulin sensitivity 

was increased (108). Moreover, dietary piperine 

decreased the mRNA expression of LXRα, a nuclear 

receptor that regulates the metabolism of several 

important lipids and also decreased the mRNA 

expression of key gluconeogenic enzymes, lipogenic 

transcription factors and their target genes in HFD-

fed mice (108). Supplementation of piperonal (20, 

30 and 40 mg/kg) for 42 days attenuated HFD-

induced body weight, body fat and biochemical 

changes through normalization of amylase and 

lipase levels, modulation of key lipid metabolizing 

and obesogenic genes in Sprague Dawley rats (89). 

Similarly, piperine supplementation in 

different doses (20, 30 and 40 mg/kg) for 42 days 

suppressed body weight and leptin, normalized the 

elevated levels of amylase and lipase and improved 

adiposity index, insulin sensitivity and adiponectin 

levels in HFD-fed Sprague Dawley rats (107). 

Administration of piperine (50 mg/kg) for 28 days to 

C57BL/6N mice appeared to reverse preexisting 

HFD-induced weight gain, hepatic steatosis and 

insulin resistance, likely mediated by adiponectin-

AMPK signaling pathway activation (106). Piperine 

supplementation (~30 mg/kg) for 16 weeks reduced 

body weight, abdominal circumference and 

abdominal fat pads and improved the impaired oral 

glucose tolerance, blood pressure, liver function, 

oxidative stress and markers of inflammation in 

HCHF-fed Wistar rats (111). The addition of 0.03% 

and 0.05% of piperine or 1.0% of Piper nigrum 

decreased the visceral body fat accumulation in 

C57BL/6J mice that were fed a high fat and high 

sucrose diet (112). These effects were at least 

partially mediated through increased expression of 

thermogenic protein uncoupling protein-1 (112). 

The suppressive effects of Piper nigrum was higher 

than that of piperine alone, implying that additional 

components are involved in fat accumulation (112). 

HFD-fed C57BL/6 mice exposed to caloric 

restriction supplemented with curcumin + piperine 

lost more fat and had significantly lower 

inflammatory markers (i.e. IL-1β and KC/GRO) 

concentrations in plasma, compared to control 

groups (105). These findings are not uniform, 

however. In another study of HFD-fed C57BL/6 

mice, supplementation of a calorie restricted diet 

with curcumin and/or piperine (50 mg/kg) for 5 

weeks provided no additional benefit to weight 

loss; on the contrary, the effect of calorie restriction 

T cell-mediated function was blunted by 

supplementation (113).  

 

Human studies: Few human studies have 

investigated the effect of Piper nigrum on weight 

management, energy balance and appetite 

regulation (114-120). Moreover, in most of the 

relevant literature Piper nigrum extracts were 

combined with other food ingredients (115-118) 

that were most likely to enhance their 

bioavailability (85). 

In a double-blind, randomized, placebo-

controlled trial (RCT), investigators examined a 

combination of bioactive food ingredients 

(capsaicinoids, epigallocatechin gallate, piperin 

from Piper nigrum, and L-carnitine) on changes in 

appetite control, energy expenditure and serum 

markers of lipolysis in 37 overweight subjects.  The 

supplemented group experienced a significantly 

greater increase in satiety (116). The same research 

group randomized 86 overweight subjects to this 

same combination of bioactive food ingredients or 

placebo.  At the 8-week follow-up point, 
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supplemented subjects had decreased insulin 

resistance and inflammatory adipokines and 

increased resting energy expenditure (115).  

Another RCT was conducted in 40 obese 

women who were randomized to three months 

supplementation with 150 mg/dose of Greenselect 

Phytosome® combined with a 15 mg/dose of 

piperine from Piper nigrum or placebo for weight 

maintenance after weight loss achieved by 3-month 

lifestyle intervention.  Compared to the placebo 

group, women treated with the supplement had 

less weight regain and thus maintained their 

reduced body weight (117).  

In a pair matched, double-blind RCT, 30 

participants were randomized to a multi-ingredient 

performance supplement including peperine or 

placebo during 6 weeks of resistance training. Both 

groups exhibited improvements in body 

composition with no by-treatment difference in 

outcome (118).   

A cross-over RCT in 16 healthy subjects was 

designed to evaluate whether the consumption of a 

Piper nigrum-based beverage would effect 

postprandial glycaemia, appetite, gut hormones, 

thyroid function, and gastrointestinal well-being 

after a white wheat bread challenge meal (50 gr 

available carbohydrates).  The Piper nigrum-based 

beverage modulated overall appetite by increasing 

satiety, no other outcomes differed by treatment 

group; however, the study beverage did not contain 

piperine due to its low water solubility and melting 

point (119). 

In a single-blind, cross-over, RCT, 22 young 

normal-weight males were assigned to receive a 

brunch meal with either pepper (1.3 g), ginger (20 

g), horseradish (8.3 g), mustard (21 g) or no spices 

(placebo).  Each test day was separated by a >3-

week washout period.  No reliable treatment 

effects of Piper nigrum on appetite, energy intake 

or energy balance were observed (114). This aligns 

with the findings of another cross-over RCT in which 

overweight postmenopausal women were 

randomized to the addition of 0.5 mg Piper nigrum 

per meal or not.  Under eucaloric conditions, the 

addition of the Piper nigrum was not associated 

with changes in glucose or insulin response or gut 

hormone levels; further, Piper nigrum did not 

modify 24-hour energy expenditure measured by 

indirect calorimeter, (120). 

 

Curcumin  

Curcumin is the principal lipophilic polyphenol 

present in the rhizome of turmeric plant Curcuma 

longa L. (common names Turmeric, Indian Saffron).  

Curcumin belongs to the ginger family and has long 

been used as culinary spice (121). Traditionally, it 

has been used in Ayurveda medicines and other 

traditional medicine systems across Asia to treat 

various diseases such as asthma, anorexia, 

coughing, hepatic diseases, diabetes, heart disease, 

and Alzheimer's disease (122). Chemical analysis of 

turmeric has yielded essential oil, fatty oil, and 

moisture. The pale yellow to orange oil is composed 

of a number of monoterpenes and sesquiterpenes, 

including zingiberene, curcumene, α and β 

turmerone, and curlone amongst others. The 

yellow pigments are curcuminoids consisting of 

curcumin (di‐feruloyl‐methane), p‐

hydroxycinnamoyl (feruloyl) methane and p, p’ – 

dihydroxy‐dicinnamoyl‐methane in three to five per 

cent concentration (123). Despite promising in vitro 

results, poor aqueous solubility, diverse 

bioavailability, and pharmacokinetic profiles limit 

curcumin's therapeutic usage. To address these 

issues, several curcumin formulations have been 

developed (124). However, suboptimal sample 

preparation and analysis methodologies often 

hamper the accurate evaluation of bioactivities and 

their clinical efficacy (125) and analytical methods 

for determination of curcuminoids in turmeric are 

still in debate (126). 
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Cell studies: Recent cellular studies indicate that 

curcumin can influence signal transduction and 

gene expression, thus reducing the viability of 

adipocytes and the proliferation of preadipocytes, 

the suppression of adipocyte differentiation and 

triglyceride accumulation, the stimulation of 

lipolysis and fatty acid β-oxidation and reduced 

inflammation (127).  Alongside this, 

the polyphenols modulate signaling pathways 

including the adenosine-monophosphate-activated 

protein kinase, peroxisome proliferator activated 

receptor γ, CCAAT/enhancer binding protein α, 

peroxisome proliferator activator receptor gamma 

activator 1-alpha, sirtuin 1, sterol regulatory 

element binding protein-1c, uncoupling proteins 1 

and 2, and nuclear factor-κB that regulate 

adipogenesis, antioxidant and anti-inflammatory 

responses (127). Curcumin has also been found to 

effect sterol regulatory element-binding proteins 

(SREBPs), major transcription factors regulating the 

expression of genes involved in the biosynthesis of 

cholesterol, fatty acid and triglyceride.   

The antioxidant and anti-inflammatory 

properties of curcumin are related to improved 

arterial health. Mechanistic studies have revealed 

superoxide dismutase, heme oxygenase-1 and 

nuclear factor erythroid 2-related factor 2 as 

emerging targets for the beneficial effects 

of curcumin on the vasculature (128). 

 

Animal studies: Animal studies strongly suggest 

that polyphenols from curcumin have a 

pronounced effect on obesity as evidenced by 

lower body weight, fat mass and triglycerides.  This 

appears to be mediated through enhanced energy 

expenditure and fat utilization, together with 

modulated glucose hemostasis (127). High fat diet 

fed male C57BL/6 were administered curcumin (80 

and 40 mg/kg/day) for 12 weeks.  Curcumin 

treatment significantly reduced body weight gain 

by 20.7% at the 80 mg/kg dose (129).  In addition, 

at a concentration of 10 μM, curcumin remarkably 

down-regulated mRNA expressions of SREBP target 

genes including nine fatty acid and triglyceride 

synthesis-related genes (SREBP-1, fatty acid 

synthase (FAS), acetyl-Coenzyme A carboxylase 

alpha (ACC1), stearoyl-Coenzyme A desaturase 1 

(SCD-1), SCD-2, ATP citrate lyase (ACL), fatty acid 

desaturase 1 (FADS1), FADS2 and glycerol-3-

phosphate acyltransferase (GPAT)) and eleven 

cholesterol synthesis related genes (SREBP-2, 3-

hydroxy-3-methylglutaryl-Coenzyme A reductase 

(HMGCR), 3-hydroxy-3-methylglutaryl-Coenzyme A 

synthase (HMGCS), lanosterol synthase (LSS), 

sterol-C4-methyl oxidase-like (Sc4mol), squalene 

epoxidase (SE), 24-dehydrocholesterol reductase 

(DHCR24), 7-dehydrocholesterol reductase 

(DHCR7), farnesyl (129).  

Additional studies in the same male mice 

models have shown that HFD-feeding 

supplemented with curcumin (4g/kg diet added 2 

days/week) prevented body weight gain compared 

to non-supplemented HFD-fed controls or low-fat 

fed mice (LFD).  HFD feeding increased the fasting 

plasma insulin levels but dietary curcumin 

supplementation significantly prevented this 

increase.  Although HFD reduced and curcumin 

increased plasma adiponectin levels, the 

differences did not reach statistical significance 

(130). In addition, curcumin supplemented HFD has 

been shown to improve insulin signaling and 

inhibited lipogenic gene expression in the liver (130, 

131). Moreover, curcumin has been shown to 

promote browning of white adipose tissue in diet-

induced obese mice, which suggests increased 

energy expenditure as another mechanism through 

which curcumin supplementation reduces fat mass 

deposition (132).  

 

Human studies: Among obese individuals, RCTs 

have shown that a supplementation of 600-1000mg 

curcumin a day for 4-8 weeks generated a reduction 
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in pro-inflammatory cytokines such as TNF-α, IL-6, 

TGF-β and MCP-1 among obese individuals in 

comparison to placebo (133, 134). A decrease in IL-

6, hs-CRP and oxidative stress levels has also been 

shown among adolescent overweight girls who 

consumed 500mg curcumin during 10 weeks of a 

weight loss diet (135). A recent comprehensive 

review concluded that curcumin can effectively 

inhibit multiple signaling molecules involved in 

inflammation including NF-κB, JAKs/STATs, MAPKs, 

β-catenin, and Notch-1(136).  Despite the metabolic 

advantages, no weight reduction has been 

documented in these studies.  

 

CONCLUSIONS 

Herbs, spices and their derivative nutrition 

supplements are commonly incorporated into the 

treatment arsenal for weight management. Pre-

clinical studies demonstrate mechanisms through 

which these herbs exert their beneficial metabolic 

effects, providing proof of concept. However, well-

designed, adequately powered clinical trials are 

necessary before treatment guidelines for these 

products can be developed. 
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