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ABSTRACT 

Heart failure (HF) is a major public health concern, with five-year mortality rates following first 

admission for HF being approximately 50%, thereby stressing the need for novel therapeutic 

approaches. Histone deacetylases (HDACs) govern lysine acetylation of histone tails that regulates 

nucleosmal DNA. HDAC inhibitors have emerged as efficacious therapies in pre-clinical models 

of HF. Interest in diet-gene interactions has given rise to the study of ‘food bioactives’ as 

epigenetic regulators of gene expression that control human health and disease. These reports 

demonstrate that bioactive food compounds regulate epigenetic marks that link diet to gene 

regulation. In fact, others have also shown that bioactive compounds can target HDACs for 

inhibition; accordingly, bioactive food compounds offer unique opportunities for therapeutic 

intervention and prevention of heart failure.  Lastly, there is emerging interest into how these food 

bioactives function together or as additives within foods ‘functional foods’ to regulate epigenetic 

disease. This review will highlight bioactive compound HDAC inhibitors and their role in the 

heart. 
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INTRODUCTION 

Approximately 5.7 million U.S. adults (>20 yrs) experience heart failure (HF), with projections 

estimating greater than 8 million adults diagnosed with HF by 2030 [1], partially due to the 

growing number of elderly adults in the U.S. Moreover, the increase in HF prevalence is projected 

to contribute to direct annual medical costs growth from $21 billion to $53 billion, with indirect 

medical costs projected to increase from $31 billion to $70 billion [2]. From 1979 to 2000, HF 

survival rates improved, due to improvements in the standards of care, including current 

therapeutic treatments such as β-blockers and angiotensin converting enzyme inhibitors (ACEi). 
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However, five-year mortality rates still remain high, being approximately 50% [1]. These statistics 

stress the need for improved therapeutic approaches capable of managing and or preventing this 

disease [3].  

The heart undergoes remodeling in response to stress such as hypertension. Cardiac 

remodeling is characterized by muscle cell hypertrophy, apoptosis, and fibrosis, generally resulting 

in cardiac dysfunction and HF [4]. β-blockers and ACEi, in addition to other standard HF 

therapeutics, regulate signaling cascades stimulated by cell surface receptors to prevent cardiac 

remodeling and pump dysfunction [5]. However, there is redundancy across signaling pathways, 

in which inhibition of a particular cascade may not be sufficient to completely block or reverse 

pathological cardiac remodeling and failure. Therefore, it has been postulated that drugs designed 

to target shared downstream mediators of these signaling pathways would be more efficacious for 

the treatment of HF. This has given rise to the suggestion that drugs designed to target the 

epigenome have the potential to inhibit shared downstream mediators of pathological signaling.  

One such group of epigenetic mediators, histone deacetylases (HDACs), have shown 

significant promise in animal studies of HF [3, 6-11]. HDACs have historically been characterized 

as regulators of nucleosomal DNA, in which they remove acetyl groups from lysine residues on 

histone tails. Removal of acetyl groups has classically been linked to heterochromatin formation 

and subsequently transcriptional repression. Conversely, acetylation of histone proteins on lysine 

residues by histone acetyltransferases (HATs) promotes transcriptional activation [3, 12-14] 

(Figure 1).  

 

Figure 1. Mechanisms of chromatin remodeling by lysine acetylation. Histone acetyl transferases 

(HATs) acetylate lysine residues on histone tails resulting in transcriptional activation. Conversely, 

histone deacetylases (HDACs) deacetylate lysine residues resulting in transcriptional repression. 

HDAC inhibitors (HDACi) inhibit HDACs from removing acetyl marks from lysine residues and 

thus alter gene expression. 
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There are currently eighteen mammalian HDACs that have been grouped into four distinct classes. 

Class I HDACs (HDACs 1, 2, 3, and 8), class II HDACs (HDACs 4, 5, 6, 7, 9, and 10) and the 

lone class IV HDAC (HDAC 11) are zinc dependent HDACs, with zinc being required for 

deacetylase activity. Moreover, class II HDACs are subdivided into IIa and IIb. Class III HDACs 

(SIRTs 1-7) is comprised of the sirtuin family. Sirtuins are nicotinamide adenine dinucleotide 

(NAD+) dependent; NAD+ is a required cofactor for deacetylase activity [13, 14] (Figure 2). 

Inhibition of zinc dependent HDACs is efficacious in animal models of heart failure [3, 6-11]. 

Therefore, this review will not discuss sirtuins. 

 

 

Figure 2. Histone deacetylases (HDACs) are categorized into distinct classes. There are eighteen 

mammalian HDACs that have been divided into four different classes. Class I, IIa, IIb, and IV 

HDACs require zinc for catalytic activity, while class III HDACs (i.e. sirtuins) require 

nicotinamide adenine dinucleotide+ (NAD+) for deacetylase activity. 

 

HDAC Inhibitors 

Currently, there are 3 FDA approved HDAC inhibitors (Vorinostat, Romidepsin, and 

Panobinostat) for the treatment of T-cell lymphoma, with at least 12 different HDAC inhibitors in 

some phase of clinical trials for the treatment of various cancers [15, 16]. In addition to these FDA 

approved compounds, valproic acid is a short chain fatty acid HDAC inhibitor available for human 

use. Although valproic acid was initially used to treat epilepsy, valproic acid has become 

prominent for the treatment of other neurological-related ailments [17]. This interest in HDAC 

inhibitors for the treatment of various diseases has driven medicinal chemistry efforts to develop 

broad spectrum, class-selective and isoform-specific HDAC inhibitors.  

The classical HDAC inhibitor pharmacophore consists of a three-part structure: 1) a zinc-

binding motif capable of binding to the active site, 2) a surface recognition domain that interacts 

with residues near the active site, and 3) a hydrocarbon linker that connects the motifs to the 

domain. HDAC inhibitors were historically classified into four groups: hydroxamic acids, short-

chain fatty acids, benzamides, and cyclic peptides [13, 14, 18]. However, ortho-aminoanilide 

HDAC inhibitors have recently been identified [19], which suggests there is other unknown HDAC 
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inhibitor groups. Potencies and HDAC class selectivity differ within these classes [14]. 

Hydroxamic acid HDAC inhibitors, such as Trichostatin A and SAHA (i.e. Vorinostat), are pan-

HDAC inhibitors that possess strong zinc-chelating properties. These are potent, low nanomolar 

HDAC inhibitors. Conversely, short-chain fatty acids, such as valproic acid and sodium butyrate, 

tend to be weak, millimolar HDAC inhibitors. Their fatty acid physiochemical properties afford 

advantages in uptake and transportation. However, their nonspecific biochemical functions limit 

target specificity and are thereby potentially disadvantageous. Benzamide HDAC inhibitors such 

as MS-275 have a classical benzene ring as the hydrocarbon linker and an amide motif. Benzamide 

HDAC inhibitors are selective for class I HDACs (HDACs 1, 2, and 3) [18]. Ortho-aminoanilide 

have a similar structure to the benzamide HDAC inhibitors. Cyclic peptide HDAC inhibitors, such 

as apicidin and Romidepsin, are often highly potent and incorporate alkyl-linking motifs as well 

as various zinc-binding groups. Cyclic peptide HDAC inhibitors tend to be selective for class I 

HDACs [20]. 

 

HDAC inhibitors and Heart Failure  

Pan and isoform-selective HDAC inhibitors have been shown to block and potentially reverse 

cardiac remodeling in the heart; these studies have been extensively reviewed [3, 6, 7, 11, 21, 22]. 

For instance, treatment with the broad spectrum HDAC inhibitor Trichostatin A (TSA), has been 

shown to block and even reverse cardiac remodeling and dysfunction in rodent models of heart 

failure [23-25]. Similarly, MPT0E014 (pan-HDAC inhibitor) reduced left ventricular wall 

thickening and improved the systolic function in rats exposed to isoproterenol-mediated HF. These 

improvements were linked to pathogenetic changes in gene expression and intracellular signaling 

[26]. Recently, SAHA, an FDA approved HDAC inhibitor, was shown to decrease infarct size and 

improved systolic heart function in a rabbit model of ischemia/reperfusion (I/R) injury. These 

findings are significant as the delivery of SAHA before or during reperfusion was effective [8], 

suggesting there is therapeutic potential for human HF.  

More specifically, we have reported that class I HDACs regulate cardiac hypertrophy and 

fibrosis [27, 28], in which class I-selective HDAC inhibition blocked cardiac myocyte hypertrophy 

and angiotensin II-dependent fibrosis. These findings have been verified in additional models of 

HF; treatment with mocetinostat was shown to alleviate and improve HF-mediated actions in vivo 

and in vitro [29, 30], while treatment with class I-selective short chain fatty acid HDAC inhibitors 

ameliorated cardiac hypertrophy and fibrosis in a rat infarct model [31]. In addition to class I-

selective HDAC inhibitors, inhibition of class IIb HDACs, in particular HDAC6, have been shown 

to improve cardiac function in rodent models of HF. Inhibition of HDAC6 imparts cardiac 

protection via improvements in myofibril contractility [32] as well as decreased cardiac 

proteotoxicity via regulation of autophagy-mediated protein aggregate degradation [33]. 

These studies highlight the potential for HDAC inhibitors in the treatment of heart failure. 

However, many of these synthetic HDAC inhibitors have adverse effects and toxicities, in addition 

to also potentially being cost prohibitive [34]. As a result, there has been a shift in today’s 

population toward natural compounds for use in medicine, which has increased demand for natural 

compound therapeutic discovery [35, 36]. Additionally, there has been a push to understand how 

bioactive food compounds regulate epigenetic marks in the control of gene expression that impacts 

human health and disease. The remainder of this review will focus on bioactive compound HDAC 

inhibitors and their potential as therapeutics for HF. 
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Bioactive HDACi  

The benefits of consuming fruits, vegetables, and whole grains have been well-studied and well-

established [37]. Research has now shifted to understand the molecular actions for how ‘food 

bioactives’ or bioactive compounds found in foods help keep us healthy. Bioactive compounds are 

found in plants, herbs, and other foods stuffs and have typically been linked to plant pigmentation, 

growth, and pest resistance; however, new findings demonstrate the importance for these 

bioactives in human health and disease [35, 38, 39]. Moreover, accumulating evidence has shown 

that dietary bioactive food compounds alter epigenetic marks that link diet-gene interactions in a 

manner that impacts pathogenetic mechanisms involved in the heart [40, 41].  

Short-chain fatty acid HDAC inhibitors have been widely studied in the heart. Short-chain 

fatty acids are typically produced by gastrointestinal bacteria via fermentation of fibrous foods 

such as fruits, vegetables, and whole grains. Treatment with short-chain fatty acid HDAC 

inhibitors tributyrin or valproic acid have been shown to block cardiac hypertrophy and fibrosis in 

a rat infarct model [31]. Additionally, sodium butyrate was shown to attenuate cardiac hypertrophy 

and fibrosis and increase systolic function in pre-clinical rodent models of heart failure via 

inhibition of class I HDAC activity [31, 42]. As short-chain fatty acid HDAC inhibitors have been 

used successfully in humans for neurological-related ailments, these data suggest potential for 

these compounds in human HF. However, it should be noted that short-chain fatty acids regulate 

various biochemical pathways, independent of HDAC activity, and could thereby improve heart 

health through multiple mechanisms of action [17].  

Other bioactive food compound HDAC inhibitors have also recently been identified [39, 43, 

44]. For instance, curcumin has been shown to regulate HDACs in various cancer models [45, 46]. 

Similar to short-chain fatty acids, curcumin has also been shown to possess multiple biological 

functions including the inhibition of histone acetyl transferases (HATs) [45]. In this report, 

curcumin-mediated inhibition of p300 HAT activity led to GATA4 transcriptional repression; 

cardiac function was subsequently improved in a rodent model of hypertension [45]. Sulforaphane 

is another dietary HDAC inhibitor with recent interest in the cancer field. Sulforaphane is 

commonly found in broccoli and has been shown to inhibit HDAC activity and increase histone 

acetylation [39, 44, 47, 48]. While most of these studies have focused on anti-carcinogenic actions 

for sulforaphane, other reports have shown the benefit of sulforaphane treatment in models of 

diabetic cardiomyopathy. Finally, our group demonstrated that grape seed procyanidin extract 

could significantly inhibit HDAC activity in rat liver, concomitant with reductions in serum 

triglycerides [49].  

The field of nutrigenomics and nutri-epigenetics has rapidly advanced in the last decade 

leading to increased reports demonstrating the potential impact for food compounds in the 

regulation of diet-epigenetic-gene interactions in human health and disease [38, 39]. However, 

most of these studies have focused on bioactives for the treatment or prevention of cancer [38, 39, 

50], with fewer studies examining the dietary HDAC inhibitors in the heart. Accordingly, we 

recently screened several isolated bioactive compounds (131 compounds) found in plants, herbs, 

and food stuffs as potential inhibitors of HDAC activity in the heart [51]. HDACs were specific to 

the non-sirtuin, zinc-dependent HDACs. We reported that eighteen of these bioactives inhibited 

HDAC activity. While we are currently investigating the epigenetic actions of these compounds 

in the heart, a brief review of the literature on these compounds has been summarized below for 

regulation of HDAC activity and/or cardiac remodeling. A summary of these compounds as 

regulators of HDAC activity can also be found in Table 1.  
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Table 1. Dietary HDAC inhibitors. The table represents the eighteen compounds identified from our 

initial screen that inhibited class I, IIa, and IIb HDAC activity in [51]. We have included a synopsis of 

their known HDAC targets below. 

Bioactive 

Compound 

Source Regulation of Acetylation References 

Apigenin Citrus, chamomile tea, 

celery 

↓Class I HDACs, Class IIa, & Class IIb activity; 

↑H3 &H4 acetylation on p21/waf1 promoter 

↓HDAC2, HDAC3, HDAC4, HDAC6, HDAC7 & 

HDAC8 protein expression 

↓HDAC1 activity & protein expression 

[51-54] 

Baicalein Roots of skullcap, 

Indian trumpetflower 

↓Class I & IIa HDAC activity 

↓HDAC 4 & 5 mRNA expression level 

[51, 55] 

Baicalin Roots of skullcap, 

Indian trumpetflower 

↓Class I, IIa, & IIb HDAC activity; 

↑SIRT1 (Class III HDAC) protein expression; 

↑H3 acetylation, ↓HDAC1 protein expression 

[51, 56, 57] 

Berberine HCl Roots, stembark ↓Class I & IIb HDAC activity [51] 

Caffeic acid Coffee, artichokes, 

wine 

↓Class I, IIa, & IIb HDAC activity;  

↓Class III HDAC (SIRT3) down expression 

↓HDAC8 activity   

[51, 58, 59] 

Dihydromyricetin Moyeam herb ↓Class I, IIa, & IIb HDAC activity [51] 

Emodin Rhubarb, buckthorn, 

Japanese knotweed 

↓Class I, IIa, & IIb HDAC activity  

↓HDAC1 protein expression 

↑SIRT1 (Class III HDAC) protein expression 

[51, 60, 61] 

EGCG Teas (green, black) ↓Class I, IIa, & IIb HDAC activity;  

↑H3 (K9 & K9/14) & H4 (K5, K12 & K16) 

acetylation 

↑Ac-H3 & ↓HDAC1 protein expression 

↓HDAC1 & ↑Ac-H4 protein expression 

↓HDAC1, 2, 3, & 8 HDAC protein expression, 

↑p53 (K373 & K382) acetylation 

↓HDAC1, 2, 3, & 8 HDAC protein expression 

↓HDAC1 & 3 mRNA expression level, ↑H3 (K9) 

acetylation on cTnI promoter 

[51, 62-67] 

Gossypol Parts of cotton plant ↓Class I, IIa, & IIb HDAC activity [51] 

Hematoxylin Heartwood of tree ↓Class IIb HDAC activity [51] 

Indirubin Glastum, buckwheat ↓Class I & IIb HDAC activity [51] 

Kaempferol Apples, grapes, 

broccoli, brussel 

sprouts 

↓Class I, IIa, & IIb HDAC activity;  

↑Ac-H3 protein expression, ↓Class I, II, and IV 

activity 

[51, 68] 

Luteolin Celery, broccoli, 

oranges 

↓Class I, IIa, & IIb HDAC activity;  

↑Ac-H3 (K14) & Ac-H4 (K5) protein expression, 

↓HDAC activity on Ac-H3 & Ac-H4 

[51, 69] 

Morin hydrate Osage orang, guava ↓Class I & IIa HDACs [51] 

Myricetin Walnuts, berries, red 

grapes 

↓Class I, IIa, & IIb HDACs;  

↑SIRT1 (Class III HDAC) protein expression 

[51, 70] 

Myricitrin Bayberry root bark ↓Class I, IIa, & IIb HDACs [51] 

Palmatine Amur cork tree ↓Class I HDACs [51] 

Quercetin dihydrate Phellodendron 

amurense, berries, 

grapes 

↓Class I, IIa, & IIb HDACs;  

↑SIRT1 (Class III HDAC) protein expression 

[51, 70, 71] 
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Apigenin 

Apigenin is a plant-derived flavanoid found in chamomile, an aromatic oil extracted from flowers 

or leaves of daisy-like plants which has traditionally been used as an oil or tea for its soothing 

qualities that aid sleep. With regards to the heart, apigenin has been shown to restore hemodynamic 

perturbations and left ventricular dysfunction in the diabetic mouse [72]. Additionally, apigenin 

has been shown to inhibit myocardial ischemia/reperfusion injury [73-75]. Cardio-protective 

actions of apigenin have been postulated to include regulation of PPAR gamma activity and 

intracellular signaling cascades such as protein kinase C (PKC) and p38 mitogen-activated protein 

kinase [72-74]. However, it should be noted that epigenetic mechanisms have also been attributed 

to this compound including regulation of micro RNA expression in addition to class I HDAC 

activity and histone acetylation [51, 52, 76, 77]. Thus, cardio-protective actions for apigenin may 

also include inhibition of HDAC activity and therefore global regulation of gene expression that 

is downstream of intracellular signaling events.   

  

Baicalein 

Baicalein is a flavonoid commonly found in the plant Scutellaria baicalensis, which is a member 

of the mint family. Traditional Chinese and Japanese medicine have used Scutellaria baicalensis 

as a component of Sho-saiko-to, which is a mixture of seven herbal preparations for the treatment 

of chronic hepatitis [78]. In the heart, baicalein has been shown to attenuate isoproterenol (ISO)-

induced myocardial injury via inhibition of NF-kB expression and subsequently inflammation and 

oxidative stress [79]. Moreover, baicalein has been shown to ameliorate angiotensin II-induced 

hypertension and cardiac remodeling in addition to LPS-induced cardiac injury. Cardio-protective 

actions of Baicalein have been attributed to attenuation of intracellular signaling cascades that 

include AKT, MAPKs, and calcineurin [80-82] as well as suppression of inflammatory gene 

expression [79]. Our recent findings revealed novel unreported actions for baicalein as a pan-

HDAC inhibitor [51]. Significantly, inhibition of HDACs has been reported to regulate 

intracellular signaling cascades in cardiac myocytes in addition to changes in gene expression [28], 

thereby supporting the postulate that baicalein-mediated inhibition of HDACs underlie its cardio-

protective actions. 

 

Baicalin  

Baicalin is a flavone that is found in several species of Scutellaria. Baicalin is the glucuronide of 

baicalein and similarly one of the chemical ingredients found in Sho-saiko-to, an herbal Japanese 

and Chinese medicine. Like baicalein, baicalin has been reported to inhibit cardiac dysfunction 

and remodeling in rodent models of chronic pressure-overload, myocardial ischemia and 

isoproterenol-induced acute myocardial infarction [83-85]. Furthermore, baicalin has been 

reported to ameliorate pulmonary fibrosis and pulmonary arterial hypertension, which impacts 

right-sided heart failure [86-88]. Like baicalein, baicalin has been reported to work via attenuation 

of intracellular signaling cascades and in particular inhibition of MAPKs [85, 87-89]. Unlike 

baicalein, it has been reported that baicalin can inhibit HDAC2 activity; this was critical for the 

inhibition of inflammation in a smoke-induced rodent model [90]. Others have reported that 

baicalin suppresses pain perception in response to spinal cord injury through inhibition of HDAC1 

[57]. Likewise, we reported pan-HDAC inhibition with baicalin in bovine cardiac tissue [51]. 



Functional Foods in Health and Disease 2017; 7(8): 577-603 Page 584 of 603 

Similar to baicalein, these data imply that cardio-protective actions for baicalin is mediated in part 

via epigenetic actions for this compound on histone acetylation via attenuation of HDAC activity.  

 

Berberine Hydrochloride (BHCl) 

Berberine is an active ingredient in the Chinese herb Coptis chinensis Franch and has been used 

for centuries to treat diabetes.  Currently, berberine is marketed as an over-the-counter drug sold 

as berberine hydrochloride (BHCl) to treat gastrointestinal infections in China [91]. Little is known 

regarding BHCl in the heart. To our knowledge, only two published articles have focused on the 

role of BHCl in the heart. BHCl was shown to attenuate diabetic myocardial fibrosis, while the 

other report demonstrated a role for BHCl in the regulation of calcium signaling and muscle 

contractility associated with arrhythmias [92, 93]. The actions for BHCl on HDAC activity and 

histone acetylation are less known; only our paper has demonstrated inhibition of class I and IIb 

HDAC activity, in which HDACs 1, 3, 6, 8, & 10 were inhibited by BHCl treatment [51]. Given 

these sparse findings, BHCl serves as an interesting candidate for future investigations regarding 

epigenetic actions in the heart. The poor bioavailability afforded to BHCl is  of concern, as it is 

inadequately absorbed from the gastrointestinal tract [94]. However, formulations combining 

BHCl with chitosan, polymer-based phospholipid micelles or micro-emulsifying drug delivery 

systems has been shown to increase GI absorption [94-96], potentially limiting this confounding 

variable.   

 

Caffeic acid  

Caffeic acid is a polyphenol found in diverse food types but commonly associated with coffee 

consumption. Coffee is the most widely consumed beverage behind water, with moderate coffee 

consumption deemed safe and beneficial in healthy persons [97]. Unsurprisingly, a meta-analysis 

of prospective studies published between 1946 and 2015 demonstrated that coffee consumption is 

associated with a significant reduction in the risk of death after acute myocardial infarction [98]. 

Consistent with these findings, caffeic acid treatment prior to or after ischemia/reperfusion injury 

has been shown to significantly reduce myocardial infarct size in rabbits. This reduction was due 

in part to inhibition of p38 MAPK signaling and amelioration of myocyte apoptosis [99]. Likewise, 

other reports demonstrate that caffeic acid treatment attenuates pathological cardiac remodeling 

via inhibition of MAPK signaling [100, 101]. Something else that is of interest is that the class III 

HDACs, Sirt1 and Sirt3 have been implicated in the cardio-protective actions for caffeic acid 

[101]. However, no reports have looked at the inhibitory impact of caffeic acid on the non-sirtuin 

HDACs in the heart. This is important, as recent reports demonstrate that caffeic acid and caffeic 

acid derivatives inhibit non-sirtuin HDAC activity in vitro [51, 59, 102]. Future studies examining 

caffeic acid HDAC inhibition as cardio-protective would be of immense interest, in part due to the 

widespread consumption of coffee. Additionally, delineation of HDAC activity in the blood of 

non-coffee and coffee drinkers could shed light into the mechanistic actions attributed to the health 

benefits of this beverage.       

 

Dihydromyricetin 

Dihydromyricetin is a flavanoid that can be found in Hovenia, the oriental raisin tree, and is listed 

as a premier anti-hangover medicine in China [103]. In the heart, dihydromyricetin has been shown 
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to protect against diabetic cardiomyopathy, ischemia/reperfusion, angiotensin II-mediated cardiac 

remodeling, and chemotherapy-induced cardiotoxicity [104-107]. In these reports, cardio-

protection was a consequence of dihydromyricetin-mediated anti-inflammatory, anti-oxidant, and 

anti-apoptotic actions [104, 105, 107]. To date, no reports have studied a role for dihydromyricetin 

in the regulation of HDAC inhibitor mediated cardiac regulation. Moreover, only one published 

report has shown that dihydromyricetin inhibits non-sirtuin HDAC activity [51]. Studies are 

currently underway in our lab to determine whether the cardio-protective actions for 

dihydromyricetin is dependent on inhibition of HDACs.      

  

Emodin 

Emodin is an anthraquinone found in the resin from rhubarb, buckthorn, and Japanese knotweed 

and has traditionally been used in Chinese herbal medicines as a laxative [108]. However, recent 

efforts have been made in studying the cardio-protective effects of emodin, with this compound 

emerging as a potential therapeutic in various inflammatory diseases [108]. Emodin has been 

shown to attenuate cardiac remodeling and improve systolic function in a rat model of diabetic 

cardiomyopathy [109]. Likewise, emodin was reported to significantly inhibit myocardial cell 

apoptosis and inflammation in a mouse model of acute myocardial infarction; these effects were 

mediated in part via suppression of inflammatory signaling and gene expression [110]. Lastly, 

emodin has been reported to protect the heart against ischemia/reperfusion injury, in part through 

mitochondrial anti-oxidant actions [111, 112]. While these papers demonstrate cardio-protection 

via emodin-dependent inhibition of inflammation and oxidative damage, HDACs have been 

implicated as regulators of these systems [7, 113-115]. However, only a couple of papers have 

implicated emodin as an HDAC inhibitor and none have linked emodin-mediated cardio-protection 

to these epigenetic actions regarding HDAC activity [51, 61]. Recent and unpublished findings 

from our lab demonstrate that emodin potently inhibits HDAC activity and increases histone 

acetylation in cardiac myocytes. Moreover, these changes in histone modification correlate with 

attenuation of pathological cardiac hypertrophy (Unpublished data). Thus, we speculate there is 

significant potential for emodin as a medicinal herb to prevent or treat heart disease; intensive 

studies are underway to test this postulate.    

 

Epigallocatechin Gallate (EGCG)  

Green tea has been considered a health-promoting beverage since ancient times. Epigallocatechin 

gallate (EGCG) is the most abundant catechin in green tea and has been extensively studied for its 

anti-carcinogenic, anti-inflammatory, and anti-oxidant properties, in addition to its cardiovascular 

and metabolic health benefits [116]. In the heart, EGCG has been shown to block cardiac 

remodeling and restore cardiac function in diabetic rats [117, 118] and aging mice [67], as well as 

protect the heart from chemo-therapeutic cardiotoxicity [119-121], isoproterenol-induced 

myocardial infarction [122], and ischemia/reperfusion injury [123, 124]. Significantly, recent 

findings have shown that EGCG treatment improved age-related diastolic dysfunction, in part 

through the inhibition of HDACs 1 and 3 [67]. EGCG-mediated inhibition of HDAC activity 

corresponded to decreased HDAC binding and increased histone acetylation at the cardiac troponin 

I promoter, which led to increased troponin I expression [67]. Cardiac troponins play an essential 

role in cardiac contraction and relaxation, suggesting that EGCG-mediated restoration of troponin 
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I expression in old mice contributed to prevention of diastolic dysfunction. While this was the first 

study to explore EGCG’s inhibitory actions of HDACs in the heart, subsequent studies are needed 

to confirm if EGCG-mediated cardio-protection results from epigenetic regulation of gene 

expression.     

 

Gossypol 

Gossypol is a polyphenol commonly found in the seed, roots and stem of the cotton plant. While 

gossypol provides the yellow pigment associated with cottonseed oil, it functions to minimize 

insect predation by promoting insect infertility [125]. This attribute has led to studies using 

gossypol as a male contraceptive in China and Africa [125]. Unfortunately, gossypol toxicosis has 

been commonly reported in cattle, goats, pigs, birds, and dogs [126-131]. Something that is of 

additional concern is how gossypol has been reported to cause cardio-toxicity and heart failure in 

dogs [128]. Unsurprisingly, unpublished findings from our lab noted cardiac myocyte death in 

response to gossypol treatments, with no visible inhibition of cardiac myocyte size noted at non-

apoptotic doses (< 1 µM). These data would suggest poor therapeutic range for this compound, 

while infertility and toxicology studies would contraindicate this food bioactive for the prevention 

or treatment of heart failure.   

 

Hematoxylin  

Hematoxylin is a compound extracted from the heartwood of the Longwood tree and is a common 

component of hematoxylin and eosin staining used in histology labs throughout the world [132]. 

While hematoxylin is extensively used in the cardiac field regarding its applications in histology, 

we have yet to find an article that looks at the cardio-protective actions for this compound. 

Moreover, only one published report demonstrates that hematoxylin inhibits HDAC activity [51]. 

Consequently, future investigations examining hematoxylin in the heart would be of significant 

interest and provide new insights into a commonly used histological reagent.  

 

Indirubin  

Indirubin can be found in Danggui Lonhhui Wan, a traditional Chinese medicine that showed 

promising results in the 1980’s for the treatment of chronic myelocytic leukemia [133]. Subsequent 

studies demonstrated anti-proliferative actions of indirubin in addition to indirubin-based 

compounds such as indirubin-3’-monoxime through inhibition of glycogen synthase kinase-3β 

(GSK-3β) [133]. These small molecule indirubin-based compounds have since been shown to 

protect the heart in rodent models of hyperlipidemia, hypertension, and diabetes [134-137]. 

Molecular studies have suggested that indirubin-mediated inhibition of GSK-3β contributes to 

cardioprotection [134-137]. Something else of interest is that HDACs have been previously linked 

to regulation of GSK-3β in the heart, in which pharmacological or genetic inhibition of HDAC2 

resulted in modulation of GSK-3β activity in a manner that attenuated cardiac hypertrophy [138]. 

As indirubin has been shown to inhibit HDAC activity [51], these results suggest that cardio-

protective actions of indirubin are HDAC-dependent.    

 

Kaempferol  

Kaempferol is a flavanoid that can be found in delphinium (perennial flowering plants), witch-

hazel, grapefruit, tea, broccoli, apples, strawberries, and beans [139]. Kaempferol contributes 
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significantly to flavanoid intake in humans (25-33% of mean flavanols intake), with U.S. 

consumption estimated at 6-10 milligrams per day [140]. This is important, as increased 

kaempferol intake has been correlated to decreased ischemic heart disease mortality [141]. Indeed, 

kaempferol has been shown to ameliorate myocardial injury in diabetic rats [142], attenuate 

cardiac hypertrophy, and improve cardiac function in mice subjected to aortic banding [143] in 

addition to protecting against myocardial ischemia/reperfusion injury [144-146]. Similar to the 

compounds noted above, kaempferol-mediated protection was dependent on the inhibition of 

intracellular signaling cascades including GSK-3β and MAPKs [142, 143, 145]. As mentioned 

previously, inhibition of HDAC activity has been reported to regulate phosphorylation of these 

critical signaling molecules [28, 138]. This is important as recent reports demonstrate that 

kaempferol acts as a pan-HDAC inhibitor, in which decreased activity was observed for HDACs 

1-11 [51, 68]. Concomitant with HDAC inhibition, hyperacetylation of histone complex H3 was 

further observed [68]. Altogether, these findings suggest that kaempferol protects the heart via 

HDAC-dependent mechanisms. Current studies are underway to investigate this hypothesis. 

 

Luteolin  

Luteolin belongs to a group of compounds called flavones and can be found in fruits and vegetables 

including celery, parsley, broccoli, onion leaves, carrots, peppers, cabbages, apple skins, and 

chrysanthemum flowers [147]. Luteolin has traditionally been used in Chinese medicine for the 

treatment of hypertension, inflammation, and cancer [147]. While dietary intakes of luteolin 

remain low [141], there has been at least one study that associated luteolin intake with decreased 

stroke incidence [148], although others reported no association [149]. In the heart, luteolin was 

found to improve cardiac dysfunction in heart failure rats, in addition to enhancing cardiac 

contractility during ischemia/reperfusion injury. These actions were likely mediated via 

enhancement of sarcoplasmic reticulum Ca2+-ATPase 2a (SERCA2a) [150, 151]. SERCA2a 

regulates excitation/contraction coupling and its role in heart failure has been extensively studied, 

in which SERCA2a expression and activity is decreased with cardiac failure [152]. Recently, 

sumoylation of SERCA2a by small ubiquitin-related modifier 1 (Sumo1) was shown to act as a 

key regulator of SERCA2a expression and activity, in which Sumo1 expression and SERCA2a 

sumoylation was decreased in heart failure patients. Sumo1 restitution by gene delivery was 

sufficient to restore SERCA2a expression and improve cardiac function [153]. These findings are 

interesting, as others have shown that inhibition of HDACs can increase sumoylation of high 

molecular weight proteins in cardiac myocytes; SERCA2a is a 110 kDa protein [154]. Moreover, 

recent reports have shown that luteolin inhibits HDAC activity and increases histone acetylation 

[51, 69], suggesting that luteolin-mediated changes in SERCA2a sumoylation, with stability 

therefore being mediated in part through HDAC activity.   

 

Morin Hydrate  

Morin is a flavonol commonly found in the branches of white mulberry, osage orange, almond, 

fig, mill, old fustic, and other members of the Moraceae family [155]. Morin has been shown to 

possess free radical scavenging, anti-inflammatory, anti-apoptotic, and anticancer properties 

[155]. In the heart, morin acts as a free radical scavenger to ameliorate isoproterenol-induced 

myocardial infarction in rats [156]. Morin has also been shown to attenuate obesity-mediated 
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hypertension in high fat fed rats as well as ameliorate hypertension in salt sensitive rats; these 

effects are likely mediated through reductions in oxidization of low-density lipoprotein (LDL) 

[157-159]. The potent anti-oxidant properties of morin are due to its ability to scavenge free 

radicals, increase expression of xanthine oxidase as well as chelate metal ions that contribute to 

oxyradical formation [160]. While we reported that morin inhibits HDAC acitivity [51], we did 

not show that inhibition was via direct interaction with the catalytic domain. We could postulate 

that morin instead chelates zinc ions, limiting zinc-dependent catalytic activity of HDACs; this 

may contribute to its cardio-protective actions.  

 

Myricetin 

Myricetin is a common plant-derived flavonol found in berries, vegetables, teas, and wines [161]. 

Moreover, myricetin is structurally related to several well-known phenolic compounds including 

quercetin, morin hydrate, and kaempferol. Accordingly, myricetin has been used for its strong anti-

oxidant, anticancer, antidiabetic, and anti-inflammatory properties [161]. Unlike kaempferol and 

quercetin, which are the largest contributors to flavonoid content in the American diet, myricetin 

only contributes 4% [140]. Despite its lower abundance in the diet, myricetin has shown promise 

as an anti-hypertensive therapeutic in high salt sensitive rats in addition to in fructose hypertensive 

rats [162, 163]. Furthermore, myricetin has been shown to protect the heart against 

ischemia/reperfusion injury [164, 165] and isoproterenol-induced myocardial infarction [166]. 

While these effects were mediated in part through the anti-oxidant actions of myricetin [165, 166], 

others noted direct inhibition of signal transducer and activator of transcription 1 (STAT1) activity 

[164]. Unfortunately, few studies have probed into the mechanistic actions of myricetin in the 

heart. To date, only one report has shown that myricetin inhibits HDAC activity [51], with no 

studies looking at the role for myricetin-mediated HDAC inhibition in the heart. These studies are 

currently underway.  

 

Myricitrin 

Myricitrin is a myricetin glycoside that can be found in black walnut or the root bark of the 

Bayberry tree. Unlike myricetin, little is known regarding myricitrin in the heart. To date, only 

three studies have examined cardio-protective actions for myricitrin [167-169]. The first showed 

that myricitrin attenuated H9c2 rat cardiac myoblast apoptosis under hyperglycemic conditions. 

Under hyperglycemic conditions, myricitrin decreased apoptotic gene expression and increased 

anti-oxidant protein expression in part through AKT-NF-E2-related factor 2 (Nrf2)-mediated 

signaling [168]. The second paper reported cardio-protection of myricitrin in a rat model of 

doxorubicin-induced cardiotoxicity via maintenance of mitochondrial membrane potential and 

reduced oxidative stress and apoptosis [169]. The third report demonstrated that myricitrin 

protected the heart against diabetic cardiomyopathy. Similar to their previous report, Zhang et al. 

[167] showed that cardioprotection was mediated through inhibition of Nrf2 via regulation of AKT 

and ERK phosphorylation. Our current findings that myricitrin inhibits HDAC activity [51] may 

shed new light into the cardio-protective actions of this compound, particularly given the known 

role for HDAC inhibitors in the regulation of AKT and ERK phosphorylation [28, 170].   
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Palmatine Chloride 

Rhizoma coptidis (RC) is the dried rhizome of medicinal plants from the family Ranunculaceae, 

[171] and has been used in traditional Chinese medicine dating back to 2800 BC in the Eastern 

Han Dynasty [172] for its antibacterial, antiviral, anti-inflammatory, anti-hyperglycemic, and 

hypo-lipidemic activities [173]. Today, RC is used in herbal medicine for the treatment of obesity, 

diabetes mellitus, hyperlipidemia, hyperglycemia, and lipid metabolism disorders [174]. The 

major bioactive constituents of RC include berberine, coptisine, palmatine, epiberberine, 

jatorrhizine, and magnoflorine [174]. Of these, palmatine is a protoberberine class of isoquinoline 

alkaloids that has been recently shown to ameliorate ischemia/reperfusion-induced acute 

myocardial injury [175]. These effects were mediated in part via increased anti-oxidant protein 

expression and reduction of inflammation [175]. As noted previously, HDAC inhibitors have been 

shown to inhibit oxidative stress and inflammation via regulation of gene expression [7, 113-115]. 

As our lab has shown that palmatine inhibits HDAC activity in cardiac tissue [51], these findings 

suggest potential unexplored actions for palmatine chloride in the epigenetic regulation of the 

heart.   

 

Quercein Dihydrate 

Quercetin is the largest contributor to flavanol intake in the U.S., comprising 70-75% mean flavone 

intake or approximately 20-22 milligrams per day. Much of this comes from consumption of 

onions, teas, berries, and apples [140]. Similar to kaempferol, increased quercetin consumption 

correlated to decreased death due to ischemic heart disease [141]. Of the compounds from our 

HDAC inhibitor screen, quercetin is the most widely studied in the heart. Unsurprisingly, quercetin 

protects the heart against heat stroke-induced injury [176], age-dependent ischemia/reperfusion 

injury [177], isoproterenol-induced cardiac injury [178], pathological cardiac remodeling in 

response to aortic constriction [179], diabetic cardiomyopathy [180], and myocardial infarction 

[181]. Of significance, two independent randomized controlled trials, in which healthy, lean, 

obese, or early stage hypertension patients were assigned placebo or quercetin showed significant 

reductions in systolic and diastolic blood pressure in patient’s receiving quercetin supplementation 

[182, 183]. These data demonstrate direct human impact for quercetin in cardiovascular protection. 

However, what is lesser known regarding the role of quercetin on HDAC activity. Of the zinc 

dependent HDACs, one report demonstrated that quercetin inhibited the class I HDAC and 

HDAC8 [184]. More recent findings from our lab demonstrate that quercetin dihydrate acts as a 

pan-HDAC inhibitor that can target HDACs 1-10 for inhibition while increasing lysine acetylation 

[51]. As a next step, it would be interesting to delineate if HDAC activity was inhibited in subjects 

supplemented with quercetin and whether or not quercetin-mediated HDAC inhibition contributed 

to reduction in systolic and diastolic blood pressure. 

 

Whole and Functional Foods 

While most of this review has focused on individual bioactive food compounds in the regulation 

of epigenetic heart disease, it is important to note that these compounds are packaged in 

combination within fruits and vegetables that we consume and/or added to foods ‘functional foods’ 

to improve or maintain health. As a result, it is increasingly imperative that we understand how 

whole and functional foods solicit epigenetic changes to regulate optimal health and prevent 
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disease. Indeed, these studies are currently underway. For instance, grape powder extract was 

recently shown to improve blood lipid profiles in mice, in part, via inhibition of HDACs 2 and 3 

and thus induction of peroxisome proliferator-activated receptor alpha (PPARα), a critical 

regulator of hepatic lipid metabolism [49]. Thus, consumption of procyanidin-rich grapes, grape 

juice, or wine has the potential to elicit epigenetic changes in a manner consistent with heart health 

[185]. Similarly, functional foods such as peal millet, a cereal enriched with flavanoids and 

phenolic acids, has been inversely correlated to mortality from coronary heart disease and heart 

attacks [186]. Investigators in this report, further identified the common flavanoids and phenolic 

acids present in several varieties of pearl millet, in which luteolin was commonly present [186]. 

These data would suggest that pearl millet potentially elicits heart healthy benefits in part through 

epigenetic regulation of DNA accessibility and therefore gene expression. While significant work 

is still required to better understand the epigenetic impact for whole and functional foods on 

optimal human health and disease prevention, current studies have begun highlighting the 

scientific evidence which gives validity to the phrase “you are what you eat.”  

 

CONCLUSION 

HDAC inhibitor therapy is efficacious and prevalent in pharmacology (e.g. Vorinostat, 

Romidepsin, and Valproic Acid), although FDA approval is predominantly for the treatment of 

cancer. Vorinostat (SAHA) poses a potential option for the treatment of human HF partially due 

to its therapeutic efficacy in rabbit ischemia/reperfusion, which established a large animal proof-

of-concept and set the stage for future clinical trials in humans [8]. Additionally, SAHA is FDA 

approved, making human HF trials feasible within a shorter period of time [187].  

While drugs like SAHA require FDA approval, bioactive food compounds such as 

sulforaphane have less FDA oversight due to the 1994 DSHEA act. Thus, bioactive HDAC 

inhibitors have the potential to see human studies more readily than current HDAC inhibitor 

therapies examined. Sulforaphane is an HDAC inhibitor found in broccoli that has been shown to 

increase histone acetylation from test tube to man [44]. While sulforaphane demonstrated proof-

of-principle (i.e. HDAC inhibitor) in healthy persons, it should be noted that these studies were 

acute (< 24 hrs) and indices of heart function were not examined. However, these data suggest that 

sulforaphane passed the intestinal epithelium as HDAC activity was inhibited in the blood. Future 

studies examining sulforaphane supplementation or broccoli feeding in HF patients would be of 

particular interest; blood diagnostics examining circulating atrial natriuretic factor (ANF), a 

classical HF biomarker, in addition to echocardiography for cardiac wall thickness and function 

could be measured as functional readouts for patient improvement. 

From our original compound screen [51], EGCG and quercetin are two food bioactives that 

also hold promise for heart failure treatment. EGCG has reportedly been shown to protect the heart 

from dysfunction and was recently shown to inhibit HDAC activity in aging mice [67, 117, 123, 

124]. As green tea is highly consumed for its health promoting benefits, it would be interesting to 

examine HDAC activity in the blood of healthy, lean, and obese individuals with and without green 

tea consumption. These data would open the door for future investigations into green tea/EGCG 

supplementation for heart promoting benefits that are dependent on epigenetic regulation. 

Quercetin supplementation has already been shown to reduce hypertension in lean and obese 

patients, suggesting cardiovascular protection [182, 183]. As a next step, it would be interesting to 
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examine changes in HDAC activity and histone acetylation in patients supplemented with 

quercetin to note if hemodynamic improvements result from epigenetic actions of this food 

bioactive. 

To conclude, nutri-epigenetics is a rapidly emerging field that has increased our knowledge 

concerning diet-gene interactions for health and disease. Our group and others are delineating 

bioactive HDAC inhibitors in fruits, vegetables, herbs, and food stuffs at an increasing rate. We 

propose the idea that many bioactive compounds act as epigenetic modifiers, in particular HDAC 

inhibitors, given the abundance of identified and unknown polyphenols and flavonoids in a variety 

of plants, herbs, and food stuffs. This suggests that food bioactives can work individually or 

cooperatively in the regulation of human health and disease. Lastly, bioactive food compound 

HDAC inhibitors offer exciting opportunities as therapeutics for the prevention or treatment of 

HF.   
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