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ABSTRACT 

Background: Pelargonium graveolens is a valuable aromatic and medicinal plant native to southern Africa, widely 

recognized for its essential oils rich in bioactive compounds with antiseptic, anti-inflammatory, and antioxidant 

properties. Its increasing cultivation in Armenia underscores its potential for natural health products and functional 

foods, where antioxidant-rich phytochemicals are in high demand. 

 

Objective: This study aimed to optimize in vitro propagation protocols for P. graveolens by evaluating the effects of 

various plant growth regulators (PGRs) on morphogenic response, phenolic accumulation, antioxidant activity, and 

essential oil composition—specifically focusing on citronellol, geraniol, and linalool. 
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Materials and Methods: Nodal explants were cultured on Murashige and Skoog (MS) medium supplemented with 

different PGRs, including 6-benzylaminopurine (BAP), kinetin (KIN), gibberellic acid (GA₃), and indole-3-butyric acid (IBA). 

After six weeks, growth parameters, chlorophyll content, total phenolic content (TPC), antioxidant activity, and essential 

oil profiles were analyzed. TPC was assessed using the Folin–Ciocalteu method, antioxidant activity via DPPH assay, and 

essential oils were identified by GC-MS. Data were statistically analyzed using one-way ANOVA (p < 0.05). 

 

Results: The PGR combination of 1.0 mg/L KIN + 1.0 mg/L GA₃ + 1.0 mg/L BAP + 1.0 mg/L IBA yielded the highest shoot 

number (3.9 ± 0.2) and length (6.3 ± 0.2 cm). Rooting was most effective with 1.0 mg/L IBA alone. The same combination 

significantly enhanced TPC (20.3 ± 0.9 mg GAE/g FW) and antioxidant activity (50.7 ± 1.8%). GC-MS analysis revealed 

increased concentrations of key essential oil constituents with known therapeutic and antioxidant properties. 

 

Conclusion: Targeted PGR combinations effectively improve in vitro regeneration and biochemical quality of P. 

graveolens, boosting its value as a source of natural antioxidants and functional ingredients. These findings demonstrate 

the potential of optimized tissue culture methods for the sustainable production of bioactive plant compounds with 

health-promoting applications. 

 

Keywords: Pelargonium graveolens, in vitro propagation, plant growth regulators, essential oils, antioxidant activity, 

bioactive compounds, functional foods 
 

 

Graphical abstract: In Vitro Cultivation and Biochemical Profiling of Geranium (Pelargonium spp.) 
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INTRODUCTION 

Pelargonium graveolens, commonly known as rose-

scented geranium, is widely cultivated for its essential oil, 

which holds significant value in the fragrance, cosmetics, 

and aromatherapy industries [2–4]. The oil is particularly 

rich in aromatic compounds such as citronellol and 

geraniol, known for their strong antimicrobial, anti-

inflammatory, and antioxidant properties [5–7]. In 

addition to its industrial applications, P. graveolens 

essential oil has demonstrated therapeutic potential in 

managing conditions such as Parkinson’s disease, 

tendonitis, and rheumatoid arthritis, contributing to 

inflammation reduction, pain relief, and improved joint 

mobility [8,9]. 

Beyond essential oils, P. graveolens is also a 

valuable source of vitamin C, a vital nutrient that 

supports immune function and skin health by mitigating 

oxidative stress [10]. In Armenia, the cultivation of 

geranium dates back to 1938, particularly in the 

Hoktemberyan and Echmiadzin regions, where it has 

traditionally been grown for essential oil production. 

Additionally, the plant has long been used in traditional 

medicine to treat fractures, respiratory diseases, fevers, 

and skin disorders. The therapeutic value of P. graveolens 

stems largely from its bioactive compounds, including 

both nutrient and non-nutrient metabolites. These 

compounds play key roles in promoting health and 

preventing chronic diseases, thereby forming the 

scientific basis for the development of functional foods 

and nutraceuticals [11–20]. 

To fully harness the potential of P. graveolens, 

ensuring a stable and high-quality supply of virus-free 

planting material is crucial. In vitro cultivation, 

particularly micropropagation, has emerged as an 

essential technique for the rapid and consistent 

production of healthy, genetically uniform plants [21–

24]. 

A major limitation in geranium cultivation lies in its 

susceptibility to viral and fungal diseases, which can 

significantly impair plant health, reduce yield, and 

compromise essential oil quality. Viral infections, in 

particular, are known to reduce oil content and disrupt 

the production of bioactive metabolites [25–30]. The 

most common diseases affecting geranium include: 

• Bacterial blight – Xanthomonas hortorum pv. 

pelargonii: Causes leaf spots, wilting, and can lead 

to complete plant collapse; a major threat to 

commercial cultivation [31]. 

• Pelargonium leaf curl virus (PLCV) – Transmitted 

by aphids; induces leaf curling, distortion, and 

reduced vigor; significant in virus indexing 

programs [32]. 

• Downy mildew – Peronospora pelargonii-zonalis: 

Leads to yellowing, leaf curling, premature drop, 

and reduced essential oil yield; highly destructive 

in humid conditions [33]. 

• Fusarium wilt – Fusarium oxysporum f. sp. 

pelargonii: A soil-borne vascular wilt pathogen; 

causes root rot, stem collapse, and dramatic yield 

losses, especially in nursery settings [34]. 

 

Given these challenges, in vitro propagation not 

only enables the rapid multiplication of high-quality P. 

graveolens plants but also offers a strategic approach for 

virus elimination and improved disease resistance [35–

38]. Recent biotechnological advances have 

demonstrated that combining micropropagation with 

virus elimination techniques can significantly improve 

plant performance and essential oil composition in 

Pelargonium species [30]. Moreover, recent studies on 

the chemical and biological profiles of Pelargonium 

roseum essential oil underscore its potential as a 

sustainable and effective source of functional bioactive 

compounds [39]. 

The present study aimed to optimize in vitro 

propagation protocols for P. graveolens using various 
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PGRs, with a focus on improving both morphogenic 

responses and biochemical characteristics. Emphasis was 

placed on enhancing the accumulation of high-value 

bioactive compounds, particularly phenolics, 

antioxidants, and essential oil constituents such as 

citronellol, geraniol, and linalool, for potential 

applications in the pharmaceutical, cosmetic, and 

functional food industries. 

 

MATERIALS AND METHODS 

Plant Material and Culture Conditions: In vitro cultures 

of Pelargonium graveolens (rose-scented geranium) 

were initiated using nodal segments obtained from 

healthy, 1-year-old greenhouse-grown plants. Explants 

were cultured on Murashige and Skoog (MS) basal 

medium supplemented with 3% (w/v) sucrose and 

solidified with 0.6% agar (Duchefa Biochemie). The pH 

was adjusted to 5.8 ± 0.1 before autoclaving at 121 °C for 

20 minutes. Cultures were maintained in a growth 

chamber at 25 ± 2 °C under a 16-hour light / 8-hour dark 

photoperiod, with a light intensity of approximately 

50 µmol m⁻² s⁻¹ provided by cool-white, fluorescent 

lamps. Each treatment consisted of 15 explants per 

replicate, with three replicates (total n = 45 per 

treatment). 

 

Shoot Proliferation under PGR Treatments: To evaluate 

the effects of PGRs on shoot induction and elongation, 

the MS medium was supplemented with various PGR 

combinations (Table 1). All PGRs—6-benzylaminopurine 

(BAP), kinetin (KIN), gibberellic acid (GA₃), and indole-3-

butyric acid (IBA)—were filter-sterilized and added to the 

medium after autoclaving. Cultures were maintained for 

six weeks, after which the number and length of 

regenerated shoots were recorded. 

 

            Table 1. PGR treatments used for shoot proliferation in Pelargonium graveolens. 
 

Treatment No. PGR Composition (mg/L) 

1 No PGR (Control) 

2 BAP (1.0) 

3 KIN (1.0) 

4 BAP (1.0) + GA₃ (1.0) 

5 KIN (1.0) + GA₃ (1.0) 

6 BAP (1.0) + KIN (1.0) + GA₃ (1.0) + IBA (1.0) 

 

Rooting Experiment: Regenerated shoots (2–3 cm in 

length) were excised and transferred to MS medium 

supplemented with various auxin treatments (Table 2) to 

induce rooting. The basal medium composition remained 

unchanged. Each treatment included 15 shoots per 

replicate, with three replicates (n = 45). After six weeks, 

the number of roots per shoot and average root length 

were recorded. 

 

                               Table 2. Auxin treatments used for root induction in Pelargonium graveolens shoots. 
 

Treatment No. Auxin Type Concentration (mg/L) 

1 None (Control) – 

2 Indole-3-acetic acid (IAA) 0.5 

3 Indole-3-acetic acid (IAA) 1.0 

4 IBA 0.5 

5 IBA 1.0 
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Biochemical Analyses: Fully expanded leaves from 

plantlets grown under various PGR treatments were 

harvested for biochemical analysis. All measurements 

were performed in triplicate. 

Chlorophyll Content: Chlorophyll a, chlorophyll b, 

and total chlorophyll were extracted using 80% (v/v) 

acetone and quantified spectrophotometrically at 645 

and 663 nm, following the method of Lichtenthaler and 

Wellburn (1983) [42]. Results were expressed as mg/g of 

fresh weight. 

• Total Phenolic Content (TPC): TPC was quantified 

using the Folin–Ciocalteu reagent as described by 

Singleton et al. (1999) [43], and expressed as mg 

gallic acid equivalents (GAE) per gram of fresh 

weight. 

• Antioxidant Activity: Antioxidant activity was 

evaluated using the DPPH radical scavenging 

assay, following Brand-Williams et al. (1995) [44]. 

Results were reported as percentage inhibition. 

• Essential Oil Extraction and Analysis: Essential oils 

were extracted from 50 g of fresh leaves by 

hydrodistillation for 3 hours using a Clevenger-

type apparatus, according to standard protocols 

[45]. Extracted oils were dried over anhydrous 

sodium sulfate and stored in sealed amber vials at 

4 °C until analysis. 

• GC–MS Composition Analysis: Essential oil 

composition was analyzed by gas 

chromatography–mass spectrometry (GC–MS) 

using an Agilent 7890A GC system coupled with a 

5975C MS detector. An HP-5MS column (30 m × 

0.25 mm, 0.25 μm film thickness) was employed, 

following the method described by Adams (2007) 

[46]. 

 

Statistical Analysis: All experiments were conducted in 

triplicate. Data were expressed as mean ± standard 

deviation (SD). Statistical differences among treatments 

were evaluated using one-way analysis of variance 

(ANOVA) at p < 0.05. Statistical analyses were performed 

using GraphPad software. 

 

RESULTS AND DISCUSSION 

The effects of various PGRs on the in vitro regeneration 

of Pelargonium graveolens (geranium) were assessed by 

evaluating shoot number, shoot length, and root number 

after six weeks of cultivation. As shown in Table 3, PGR 

treatments significantly influenced these growth 

parameters. No shoot formation was observed in the 

control group.

 

            Table 3. Effect of Various PGRs on Shoot Number and Shoot Length of Pelargonium graveolens 
 

Treatment Shoot Number (Mean ± SD) Shoot Length (cm, Mean ± SD) 

Control No shoots formed No shoots formed 

1.0 mg/L BAP 2.2 ± 0.3 4.3 ± 0.3 

1.0 mg/L KIN 1.1 ± 0.4 4.0 ± 0.3 

1.0 mg/L BAP + 1.0 mg/L GA₃ 2.7 ± 0.3 5.5 ± 0.2 

1.0 mg/L KIN + 1.0 mg/L GA₃ 1.7 ± 0.2 4.7 ± 0.2 

1.0 mg/L KIN + 1.0 mg/L GA₃ + 1.0 mg/L BAP + 1.0 mg/L IBA 3.9 ± 0.2 6.3 ± 0.2 

A one-way ANOVA revealed a statistically significant 

effect of PGR treatments on shoot number (p < 0.05), 

indicating substantial differences among the groups. The 

highest shoot proliferation (3.9 ± 0.2) occurred with the 

combined treatment of 1.0 mg/L KIN, 1.0 mg/L GA₃, 1.0 

mg/L BAP, and 1.0 mg/L IBA, while the lowest (1.1 ± 0.4) 

was recorded with 1.0 mg/L KIN alone. The absence of 

shoot formation in the control group further confirmed 

the necessity of PGRs for regeneration. The enhanced 

shoot proliferation under combined cytokinin (KIN and 
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BAP), gibberellin (GA₃), and auxin (IBA) treatments likely 

results from their synergistic interaction. Cytokinins are 

known to stimulate cell division and shoot initiation, 

while auxins promote elongation and morphogenesis 

[47,48]. BAP alone (2.2 ± 0.3) and its combination with 

GA₃ (2.7 ± 0.3) also significantly increased shoot number 

compared to the control, underlining the role of 

gibberellins in enhancing shoot proliferation. Shoot 

length varied significantly across treatments (p < 0.05), 

with the longest shoots (6.3 ± 0.2 cm) observed under the 

combined KIN, GA₃, BAP, and IBA treatment. The BAP + 

GA₃ treatment also resulted in relatively long shoots (5.5 

± 0.2 cm), whereas the shortest shoots (4.0 ± 0.3 cm) 

were recorded under KIN alone. These findings reinforce 

the distinct yet complementary roles of PGRs: cytokinins 

mainly initiate shoot formation, while gibberellins 

facilitate elongation. This trend aligns with earlier studies 

reporting cytokinin–gibberellin interactions that enhance 

shoot development in various species [49]. The effects of 

different auxin treatments on root number and root 

length in in vitro-cultivated P. graveolens plants are 

shown in Figure 1. Data are expressed as mean ± 

standard deviation (SD) and highlight the role of auxins in 

promoting root initiation and elongation across 

treatments. 

 

 
 
                          Figure 1. Effect of different PGR treatments on in vitro rooting of Pelargonium graveolens (Geranium). 
 

One-way ANOVA revealed significant differences in 

root number among auxin treatments (F = 533.13, p < 

0.001), confirming the pivotal role of auxins in root 

initiation. The highest root number was observed with 

1.0 mg/L indole-3-butyric acid (IBA) (6.4 ± 0.5), followed 

by 1.0 mg/L indole-3-acetic acid (IAA) (5.3 ± 0.3). Lower 

concentrations—0.5 mg/L IBA (4.6 ± 0.4) and 0.5 mg/L 

IAA (3.9 ± 0.5)—also significantly increased root numbers 

compared to the untreated control (1.6 ± 0.2), where 

root formation was minimal. These findings demonstrate 

the superior efficacy of IBA over IAA in promoting root 

development under in vitro conditions. Kumar et al. 

(2023) [50] similarly reported that 2000 mg/L IBA was the 

most effective concentration for enhancing root 

formation in Pelargonium graveolens stem cuttings. 

Root length analysis showed a comparable trend, 

with significant differences among treatments (F = 67.13, 

p < 0.001). The longest roots (4.6 ± 0.5 cm) were recorded 
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with 1.0 mg/L IBA, followed by 1.0 mg/L IAA (4.0 ± 0.5 

cm). Lower auxin concentrations also promoted root 

elongation relative to the control (2.7 ± 0.5 cm). These 

results further affirm the positive role of auxins, 

particularly IBA, in enhancing both root number and 

length—likely due to IBA’s greater chemical stability and 

sustained activity, which facilitate cell division and 

elongation in root primordia [51]. 

The effects of various PGRs on the total phenolic 

content and antioxidant activity of Pelargonium 

graveolens leaves are presented in Table 4. 

 

Table 4. Effect of different PGR treatments on total phenolic content and antioxidant activity in Pelargonium graveolens 

leaves. 
 

Treatment Combination Total Phenolic Content (mg GAE/g) 

(Mean ± SD) 

Antioxidant Activity (% Inhibition) (Mean ± SD) 

Control (No PGR) 10.2 ± 0.5 35.5 ± 1.2 

Single PGR   

1 mg/L BAP 15.8 ± 0.7 42.3 ± 1.4 

1 mg/L KIN 14.2 ± 0.6 40.8 ± 1.3 

Combined PGRs   

1 mg/L BAP + 1 mg/L GA₃ 18.4 ± 0.8 47.2 ± 1.6 

1 mg/L KIN + 1 mg/L GA₃ 16.5 ± 0.7 45.0 ± 1.5 

1 mg/L KIN + 1 mg/L GA₃ + 1 mg/L BAP + 1 mg/L 

IBA 

20.3 ± 0.9 50.7 ± 1.8 

 

The results demonstrated a significant effect of PGR 

treatments on both total phenolic content and 

antioxidant activity in Pelargonium graveolens leaves. 

The control treatment (no PGRs) exhibited the lowest 

phenolic content (10.2 ± 0.5 mg GAE/g). Application of 1 

mg/L BAP significantly increased phenolic content to 15.8 

± 0.7 mg GAE/g, while 1 mg/L KIN resulted in a moderate 

increase to 14.2 ± 0.6 mg GAE/g. Combined treatments 

further enhanced phenolic accumulation: 1 mg/L BAP + 1 

mg/L GA₃ raised phenolic content to 18.4 ± 0.8 mg GAE/g, 

and 1 mg/L KIN + 1 mg/L GA₃ to 16.5 ± 0.7 mg GAE/g. The 

highest phenolic content (20.3 ± 0.9 mg GAE/g) was 

observed with the full combination of 1 mg/L KIN, 1 mg/L 

GA₃, 1 mg/L BAP, and 1 mg/L IBA. These findings suggest 

a synergistic effect of multiple PGRs in promoting 

phenolic biosynthesis more effectively than individual 

treatments [52]. 

Antioxidant activity exhibited a similar trend. The 

control showed the lowest inhibition percentage (35.5 ± 

1.2%). Treatments with 1 mg/L BAP (42.3 ± 1.4%) and 1 

mg/L KIN (40.8 ± 1.3%) moderately enhanced antioxidant 

potential. Combination treatments produced further 

improvements: 1 mg/L BAP + 1 mg/L GA₃ elevated 

antioxidant activity to 47.2 ± 1.6%, and 1 mg/L KIN + 1 

mg/L GA₃ reached 45.0 ± 1.5%. The highest antioxidant 

activity (50.7 ± 1.8%) was achieved with the full 

combination of all four PGRs. These results highlight 

synergistic interactions among PGRs in enhancing the 

antioxidant capacity of P. graveolens leaves [53]. 

Comparing individual and combined treatments, 

combined applications had a more pronounced effect on 

both phenolic content and antioxidant activity. For 

example, 1 mg/L BAP alone increased phenolic content 

by approximately 55% compared to the control, while its 

combination with 1 mg/L GA₃ resulted in an 80% 

increase. The full combination treatment nearly doubled 

phenolic content, underscoring the additive effect of 

multiple PGRs. 
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Antioxidant activity followed the same pattern: the 

full combination treatment enhanced antioxidant activity 

by approximately 43% compared to the control, further 

supporting the synergistic benefits of multiple growth 

regulators. The observed synergy may be attributed to 

the interplay between cytokinins, gibberellins, and 

auxins, collectively regulating phenolic biosynthesis  

pathways and antioxidant enzyme activity [52-53]. 

To further explore the relationship between total 

phenolic content and antioxidant activity in Pelargonium 

graveolens leaves, a correlation analysis was performed 

across the different PGR treatments. The results are 

presented in Figure 2, which illustrates the strength and 

nature of this association.

 

 
 
Figure 2: Correlation between Total Phenolic Content and Antioxidant Activity in Pelargonium graveolens leaves 

 

Figure 2 illustrates a strong positive correlation 

between total phenolic content (mg GAE/g) and 

antioxidant activity (% inhibition) in P. graveolens leaves 

under different PGR treatments. Each point represents 

the mean value for a specific treatment. The red 

trendline indicates this relationship, with a coefficient of 

determination (R²) of 0.98, suggesting that increased 

phenolic content is strongly associated with enhanced 

antioxidant activity. The scatter plot shows that 

treatments yielding higher total phenolic content also 

demonstrate greater antioxidant activity. Notably, 

combined PGR treatments—such as 1 mg/L BAP + 1 mg/L 

GA₃ and the full combination of 1 mg/L KIN + 1 mg/L GA₃ 

+ 1 mg/L BAP + 1 mg/L IBA—cluster in the upper right 

quadrant of the plot, reflecting improved biochemical 

responses. This trend indicates a synergistic effect of 

multiple PGRs in promoting both phenolic biosynthesis 

and antioxidant potential. Overall, the data presented in 

Figure 2 strongly support the hypothesis that optimized 

combinations of PGRs significantly enhance the 

biochemical quality of Pelargonium graveolens by 

increasing both total phenolic content and antioxidant 

activity. To further explore the biochemical effects of PGR 

treatments, the chemical composition of essential oils 

extracted from treated leaves was analyzed using GC-MS. 

The major monoterpenoid constituents identified and 

their relative concentrations under different treatments 

are summarized in Table 5 and illustrated in Figure 3.
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Table 5. Essential Oil Composition of Pelargonium graveolens Leaves under Different PGR Treatments 
 

Component Control (µg/g) 

(Mean ± SD) 

1 mg/L BAP (µg/g) 

(Mean ± SD) 

1 mg/L KIN (µg/g) 

(Mean ± SD) 

1 mg/L BAP + 1 

mg/L GA₃ (µg/g) 

(Mean ± SD) 

1 mg/L KIN + 1 

mg/L GA₃ (µg/g) 

(Mean ± SD) 

1 mg/L KIN + 1 mg/L GA₃ 

+ 1 mg/L BAP + 1 mg/L 

IBA (µg/g) (Mean ± SD) 

Citronellol 270.5 ± 10 350.0 ± 12 324.9 ± 11 390.8 ± 13 410.5 ± 15 429.5 ± 16 

Geraniol 151.4 ± 7 178.0 ± 8 163.2 ± 7.5 198.5 ± 9 187.9 ± 8.5 210.8 ± 10 

Linalool 30.5 ± 2 40.5 ± 2.5 37.6 ± 2.3 50.5 ± 3 51.0 ± 3.1 65.0 ± 4 

Isomenthone 22.2 ± 1.5 25.5 ± 1.8 24.9 ± 1.7 27.1 ± 1.9 25.9 ± 1.6 28.2 ± 2 

Geranyl formate 20.2 ± 1 22.9 ± 1.2 23.6 ± 1.3 25.8 ± 1.4 24.9 ± 1.3 25.7 ± 1.4 

Menthone 31.4 ± 2 33.8 ± 2.2 32.5 ± 2 35.4 ± 2.3 35.1 ± 2.2 36.6 ± 2.4 

Application of PGRs significantly altered the 

essential oil composition of Pelargonium graveolens 

leaves (Table 5, Figure 3). Key monoterpenoid 

components—citronellol, geraniol, linalool, 

isomenthone, geranyl formate, and menthone—were 

notably elevated in all treated samples compared to the 

control.  Among these, citronellol showed the largest 

increase, reaching 429.5 µg/g under the combined 

treatment of 1 mg/L KIN + 1 mg/L GA₃ + 1 mg/L BAP + 1 

mg/L IBA, representing a 58.7% increase over the control 

level of 270.5 µg/g. This suggests a synergistic 

enhancement of citronellol biosynthesis by the combined 

application of cytokinins, gibberellins, and auxins, which 

proved more effective than single PGR treatments. 

Geraniol also followed this trend, increasing by 39.2% to 

210.8 µg/g in the combined treatment group, 

underscoring the role of PGRs in elevating this aromatic 

compound. Linalool exhibited the most dramatic relative 

increase, more than doubling from 30.5 µg/g in controls 

to 65.0 µg/g under combined PGR treatment—an 

increase of 113%—demonstrating its strong 

responsiveness to synergistic hormonal effects. 

Isomenthone and geranyl formate increased moderately 

by approximately 27%, while menthone showed the 

smallest increase of 16.5%. The low standard deviations 

across treatments confirm the reliability and 

reproducibility of these findings. The observed effects of 

PGR treatments on Pelargonium graveolens highlight the 

intricate hormonal regulation underlying both 

morphogenesis and secondary metabolism. The superior 

shoot proliferation and elongation seen with combined 

cytokinin (BAP, KIN), gibberellin (GA₃), and auxin (IBA) 

application reflect the importance of hormonal crosstalk 

during in vitro regeneration. Cytokinins stimulate cell 

division and shoot initiation, gibberellins enhance cell 

elongation, and auxins promote root formation and 

tissue differentiation, collectively driving improved 

plantlet growth [54]. Among auxins tested, IBA 

outperformed IAA in stimulating root development, likely 

due to its greater chemical stability and slower 

breakdown rate, consistent with findings in other species 

such as Ruta graveolens [55–57]. The increase in total 

phenolic content and antioxidant activity under 

combined PGR treatments suggests activation of the 

phenylpropanoid pathway—a key route for secondary 

metabolite biosynthesis. These results align with 

previous studies showing that environmental and 

hormonal cues can enhance phenolic and essential oil 

production in P. graveolens [58]. The strong positive 

correlation (R² = 0.98) between phenolic content and 

antioxidant activity further supports their key role in 

plant defense mechanisms. 
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Figure 3. Essential oil composition of Pelargonium graveolens leaves under different plant growth regulator (PGR) 

treatments. The bar chart shows the mean concentrations (µg/g fresh weight) ± standard deviation (SD) of major monoterpenoids 

identified by GC-MS, including citronellol, geraniol, linalool, isomenthone, geranyl formate, and menthone. Combined PGR treatment 

(KIN + GA₃ + BAP + IBA) notably enhanced the levels of citronellol and linalool. 

 

Moreover, the significant increases in essential oil 

monoterpenoids—particularly citronellol, geraniol, and 

linalool—indicate hormonal regulation of terpenoid 

biosynthesis pathways, likely mediated by cytokinin-

sensitive mechanisms such as the methylerythritol 

phosphate (MEP) pathway. Similar cytokinin-induced 

enhancements in linalool and related compounds have 

been observed in other geranium species [59], 

highlighting the potential of plant growth regulator (PGR) 

manipulation to improve the commercial quality of 

essential oils. Roman et al. (2024) demonstrated that the 

essential oil composition of Pelargonium graveolens 

varies considerably depending on drying and extraction 

methods, with citronellol and linalool levels influenced by 

environmental factors [60]. Our study builds on these 

findings by identifying hormonal regulation as an 

additional factor driving monoterpenoid biosynthesis 

under highland cultivation conditions. Furthermore, 

Santos et al. (2025) provided a comprehensive review of 

P. graveolens essential oil, emphasizing that advanced 

extraction and encapsulation techniques enhance the 

stability, bioactivity, and food application potential of key 

monoterpenoids such as citronellol and geraniol [61]. 

 

Practical Implications and Future Directions: These 

findings provide valuable insights for optimizing 

micropropagation protocols aimed at simultaneously 

enhancing biomass yield and phytochemical 

accumulation in Pelargonium graveolens. The strategic 

application of combined cytokinins, gibberellins, and 

auxins not only supports robust morphogenesis but also 

significantly enhances the synthesis of pharmacologically 

and commercially important aromatic compounds. 

Future research should aim to elucidate the 

molecular mechanisms underlying PGR-regulated 

secondary metabolism, particularly through gene 

expression analysis of key biosynthetic enzymes. 

Additionally, validating the effectiveness of these PGR 

combinations during the ex vitro acclimatization phase 

http://www.ffhdj.com/
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will be essential for confirming their applicability in large-

scale cultivation and essential oil production. 

Together, the observed biochemical and 

morphogenic enhancements underscore the 

effectiveness of integrated PGR treatments for improving 

both growth performance and essential oil profiles in P. 

graveolens. Furthermore, the demonstrated role of IBA 

in promoting root development under in vitro conditions 

supports its inclusion in optimized protocols. By situating 

these findings within the Armenian highland context—

characterized by distinctive ecological and climatic 

conditions—this study contributes to the development of 

region-specific micropropagation strategies for aromatic 

and medicinal plants with high economic value. 

 

CONCLUSION 

The synergistic application of kinetin, gibberellic acid, 

benzylaminopurine, and indole-3-butyric acid 

significantly enhanced in vitro regeneration, root 

development, and the biochemical profile of 

Pelargonium graveolens. This combined treatment 

promoted robust shoot and root formation while 

markedly increasing phenolic content and antioxidant 

capacity, thereby strengthening the plant’s functional 

bioactivity. Moreover, the optimized treatments 

enriched the essential oil composition, with notable 

increases in citronellol, geraniol, and linalool—

compounds valued for their therapeutic properties. The 

strong positive correlation between phenolic content 

and antioxidant activity underscores the potential to 

produce high-value plant material with enhanced 

medicinal qualities. To fully harness these advantages, 

future studies should assess the in vivo bioavailability and 

health-promoting effects of these enriched compounds, 

paving the way for their incorporation into functional 

foods and natural antioxidant products. 

 

Abbreviations: ANOVA – Analysis of Variance; BAP – 6-

Benzylaminopurine; DPPH – 2,2-Diphenyl-1-

picrylhydrazyl; GA₃ – Gibberellic Acid; GAE – Gallic Acid 

Equivalent; GC-MS – Gas Chromatography–Mass 

Spectrometry; IAA – Indole-3-acetic Acid; IBA – Indole-3-

butyric Acid; KIN – Kinetin; MS – Murashige and Skoog 

(medium); PGR – Plant Growth Regulator; PLCV – 

Pelargonium Leaf Curl Virus; SD – Standard Deviation. 
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