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ABSTRACT 

Background: Modern food production is increasingly focused on developing functional food products with pronounced 

biologically active properties. Tomatoes (Solanum lycopersicum L.) and sweet peppers (Capsicum annuum L.) are valuable 

vegetable crops rich in vitamins, antioxidants, and other phytonutrients. However, they are susceptible to fungal 

diseases, especially under greenhouse conditions. 

Objective: To study the effectiveness of microbiological complexes based on Bacillus subtilis and Trichoderma viride as 

plant growth stimulators and biological control agents for tomatoes and sweet peppers. 

Methods: The study was conducted in a greenhouse at the Scientific Centre of Vegetable and Industrial Crops, Ministry 

of Economy of the Republic of Armenia, during the spring and summer-autumn seasons of 2024–2025. Microbiological 

complexes based on B. subtilis and T. viride were applied to the soil via root treatment, both individually and in 

combination. Phenological parameters, yield, and biochemical characteristics of the fruits were assessed: the contents 

of ascorbic acid, total phenolic compounds, carotenoids, and sugars were measured spectrophotometrically; dry matter 

content- refractometrically; and nitrate levels- calorimetrically. A phytosanitary evaluation of the plants was also 

performed. The pathogens Fusarium oxysporum and Verticillium dahliae were identified using qPCR, followed by 

determination of the infection rate. Data were analyzed using ANOVA and the LSD test. 
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Results: The conducted research demonstrated that the application of microbiological formulations had a positive effect 

on all stages of ontogenesis in tomato and sweet pepper, especially when B. subtilis and T. viride were used in 

combination, compared to both the control and the individual treatments. The formulations contributed to the 

acceleration of phenological phases, an extended fruiting period, and an increase in overall yield. Biochemical analysis 

of the fruits showed an increase in the content of vitamin C, total phenolic compounds, and carotenoids, indicating 

enhanced antioxidant capacity, as well as higher levels of sugars and dry matter. A reduction in nitrate content was also 

recorded, confirming an improvement in both nutritional and environmental value of the produce. 

        Phytosanitary monitoring revealed a consistent decrease in the incidence of Fusarium wilt (F. oxysporum) and 

Verticillium wilt (V. dahliae). The formulations exhibited pronounced antagonistic activity against phytopathogens, 

particularly under combined application. Moreover, a cumulative effect observed in the second year of use resulted in 

further reduction of diseased plants, underscoring the formulations' potential as effective tools for long-term biological 

protection. 

Novelty: For the first time in Armenia, a comprehensive study was conducted on the synergistic action of microbial 

complexes based on PGPR (Bacillus spp.) and PGPF (Trichoderma spp.) when applied together on tomato and sweet 

pepper. A strong bioprotective and growth-stimulating effect was established, accompanied by improvements in 

agrobiological and biochemical characteristics. The results lay the groundwork for the implementation of 

environmentally safe bioprotection strategies in greenhouse vegetable production in Armenia and neighboring regions. 

Conclusion: Microbiological complexes based on Bacillus subtilis and Trichoderma viride are effective plant growth 

biostimulants and bioprotective agents, contributing to the production of environmentally friendly and functionally 

enriched tomatoes and peppers, making them promising for sustainable agriculture. 

Keywords: Bacillus subtilis, Trichoderma viride, biostimulants, tomato, sweet pepper, microbial complex, phytosanitary 

status, crop yield, antioxidant compounds, fruit quality 
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INTRODUCTION 

Modern food industry development focuses not only on 

providing the population with high-quality and safe 

products but also on creating functional foods with 

pronounced biological activity [1-6]. Against the 

backdrop of increasing chronic diseases, declining 

immune status among the population, and ecosystem 

degradation, approaches based on the use of 

environmentally friendly biotechnologies that enhance 

the nutritional value and safety of products are becoming 

increasingly relevant [7]. 

Functional foods play a critical role in the 

prevention of chronic diseases and the maintenance of 

health through the consumption of products rich in 

bioactive compounds [8–11]. Among such foods, 

tomatoes (Solanum lycopersicum L.) and sweet/hot 

peppers (Capsicum annuum L.)- important 

representatives of the Solanaceae family- are widely used 

in the human diet. These crops not only contribute to the 

sensory and nutritional qualities of foods but also exert 

significant beneficial effects on human health due to 

their high content of vitamins, minerals, antioxidants, 

and other physiologically active compounds [12–13]. 

Tomatoes and peppers exhibit antioxidant [14–15], 

anti-inflammatory [16], anticancer [17], and 

cardioprotective properties [18–19], as well as contribute 

to immune system support and cognitive function 

improvement [20]. Consumption of these vegetables, 

both fresh and processed, enriches the diet with essential 

nutrients, promoting human health. The bioactive 

compounds present in these crops encompass a broad 

spectrum of substances, including carotenoids [21–23], 

flavonoids [24–26], organic acids [27], phenolic 

compounds [28–29], vitamins [30–32], mineral elements 

[33–34], and dietary fibers [35]. Despite the high 

potential of tomatoes and peppers as sources of 

functional food, these crops remain vulnerable to fungal 

diseases, especially under protected cultivation 

conditions. Due to the need to reduce chemical pesticide 

use, there is growing interest in microbiological plant 

protection agents as an environmentally safe and 

sustainable alternative. 

In recent years, considerable attention has been 

focused on the use of rhizosphere microorganisms that 

promote plant growth, including both rhizobacteria 

(PGPR, Plant Growth-Promoting Rhizobacteria) and 

symbiotic fungi (PGPF, Plant Growth-Promoting Fungi). 

Among these, representatives of the Bacillus spp. (PGPR) 

and Trichoderma spp. (PGPF) are of particular value due 

to their pronounced biostimulatory and protective 

properties [36–37].  

Bacillus subtilis is an aerobic Gram-positive 

bacterium known for its ability to produce a wide range 

of antibiotics, enzymes, and phytohormones that 

stimulate plant growth and suppress phytopathogens 

[38]. Trichoderma viride is a fungus with strong 

antagonistic activity capable of inhibiting the 

development of pathogenic fungi by competing for 

nutrients and producing enzymes that degrade the cell 

walls of pathogens. The use of these microorganisms in 

bioproducts contributes not only to plant disease 

protection but also to improving their physiological 

condition, which is essential for obtaining 

environmentally safe and functionally valuable produce 

[39–41]. 

The main biological effects of B. subtilis and T. viride 

are presented in Table 1, which summarizes their key 

functions and modes of action: 
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Table 1. Key Effects of Soil Microbial Agents 

Biological basis of the complex Key effects 

Bacillus subtilis 

Fungicidal activity (production of lipopeptides, antibiotics); induction of systemic resistance (ISR); 

stimulation of root formation and shoot growth; synthesis of phytohormones (auxins, gibberellins); 

ability to solubilize insoluble phosphorus compounds in soil, making them available to plants; 

nitrogen fixation; humus formation and improvement of soil structure; antagonism against 

pathogens in the rhizosphere. 

Trichoderma viride Suppression of fungal pathogens (mycoparasitism, antagonism); production of lytic enzymes 

(cellulases, chitinases); mineralization of organic residues; synthesis of phytohormones (IAA, GA3, 

cytokinins); stimulation of root system growth and development; enhancement of local and 

systemic plant immunity; increased stress tolerance (salinity, temperature, drought); degradation 

of pesticides and heavy metals. 

The integration of such microbial-based 

preparations into protected cultivation technologies 

offers the potential to reduce the use of chemical plant 

protection agents and to maintain a stable phytosanitary 

status of greenhouse crops [36].  

The present study aimed to evaluate the efficacy of 

microbial complexes based on Bacillus subtilis and 

Trichoderma viride as natural plant growth stimulators 

and biological control agents for tomato and sweet 

pepper cultivation, with a view toward the subsequent 

use of the harvested produce in the development of 

environmentally friendly functional food products. 

MATERIAL AND METHODS 

The study was conducted at the Scientific Centre of 

Vegetable and Industrial Crops of the Ministry of 

Economy of the Republic of Armenia (SCVIC, MEofRA). 

Research material: Within the framework of the study, 

two soil-applied microbial formulations were 

investigated: one based on Bacillus subtilis and the other 

on Trichoderma viride (commercial name.  

Both microbiological complexes were applied as 

root treatments at a rate of 5 g per 100 m² (equivalent to 

0.5 kg/ha). The study was conducted over two years 

(2024–2025) under greenhouse conditions during both 

the spring and summer-autumn growing seasons. The 

test crops were tomato F1 Lusarpi and sweet pepper cv. 

Loshtak. 

The experiment included four treatment variants: 

● N1 (Control): without application of 

microbiological complexes; 

● N2: application of the Bacillus subtilis-based

complex;

● N3: application of the Trichoderma viride-based

complex;

● N4: combined application of both B. subtilis+ T.

viride complexes.

In all treatments, including the control, a uniform 

mineral nutrition system based on an NPK complex was 

used. The absence of microbiological products in the 

control variant ensured an objective assessment of their 

effectiveness against the background of identical mineral 

supply. 

Greenhouse conditions: The experiments were 

conducted in a glass-covered greenhouse of the Scientific 

Center located in Darakert village, Ararat Province, 

Armenia (coordinates: 40.115018° N, 44.417768° E). Soil 

electrical conductivity (EC) ranged from 1.2 to 2.5 dS·m⁻¹, 

with a pH level between 7.0 and 7.5. Mineral nutrition 

was applied based on the agrochemical characteristics of 

the soil and the developmental stage of the crops. The 

temperature regime in the greenhouse was maintained 

at 25–28 °C during the day and 16–20 °C at night. 
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Seedling transplantation was carried out on March 

5–6 for the spring season and on May 19–20 for the 

summer-autumn season. The experiment was laid out in 

a randomized block design with three replications. The 

planting density for tomatoes is 2.5 plants per 1 m², and 

for peppers - 4 plants per 1 m². 

Phenological observations and yield assessment: 

Phenological observations were conducted throughout 

the entire growing season, with the registration of key 

developmental stages: from mass seedling emergence to 

the onset of flowering (50%), from emergence to the 

stage of biological ripeness (BR, 50%) for both crops, and 

additionally to the stage of technical ripeness (TR, 50%) 

for sweet pepper. Yield assessment was carried out 

during all stages of fruiting and included the 

measurement of early yield (during the first 15 days of 

fruiting) as well as total yield accumulated over the entire 

harvesting period. 

Fruit quality parameters: Biochemical analysis of tomato 

and pepper fruits was carried out at the Laboratory of 

Plant Biotechnology, Phytopathology, and Biochemistry 

of the SCVIC. The evaluation was performed in three 

replicates at the stage of biological ripeness of the fruits. 

Ascorbic acid content was determined using a 

spectrophotometric method with a Carry 60 UV-Vis 

spectrophotometer (Agilent Technologies, USA), 

following a standard protocol involving 2,4-

dinitrophenylhydrazine and measuring absorbance at λ = 

520 nm. Calibration solutions were prepared using L-

ascorbic acid [13]. 

For total carotenoid extraction, a mixture of hexane 

and ethanol in a 3:1 (v/v) ratio was used at a volume of 

10 mL per 1 g of ground sample. The extraction was 

carried out at room temperature for 30 minutes. The 

quantitative determination of total carotenoid content 

was performed spectrophotometrically at a wavelength 

of 450 nm, and the results were expressed in micrograms 

of beta-carotene equivalents per 100 g of fresh weight 

(FW) of the sample [13]. 

The total phenolic content was determined using a 

spectrophotometric method with the Folin–Ciocalteu 

reagent, measuring absorbance at λ = 765 nm. 

Calibration solutions were prepared using gallic acid, and 

the results were expressed as milligrams of gallic acid 

equivalents per 100 g of fresh weight [42]. 

Total sugar content was measured 

spectrophotometrically by recording the absorbance at λ 

= 490 nm. Calibration solutions were prepared using 

glucose as the standard [3]. Dry matter content was 

determined using a refractometer. 

The determination of nitrate content in vegetable 

fruits is carried out using the colorimetric method with 

hydrazine reduction (SM 4500-NO3-H) on the automatic 

analyzer Gallery Aqua Master Discrete Analyzer (Thermo 

Fisher Scientific) in accordance with ISO 14001:2015. 

During the analysis, nitrates are reduced by hydrazine to 

nitrites, which react with Griess reagents to form a 

colored azo dye. The intensity of the coloration is 

measured photometrically at a wavelength of 520–540 

nm. The nitrate concentration is determined based on a 

calibration curve of standard solutions. 

Phytosanitary assessment: Molecular identification of 

Fusarium oxysporum and Verticillium dahliae was 

performed using quantitative real-time PCR (qPCR) at the 

Laboratory of the SCVIC. Samples included infected 

stems, roots, and vascular tissues of tomato and pepper 

plants exhibiting wilting symptoms. Sample collection 

was carried out under natural infection conditions. 

All stages of molecular analysis—including DNA 

extraction, preparation of the reaction mixture, and 

amplification- were conducted in accordance with the 

protocol provided by the manufacturer of the Genetic 

PCR kits (Spain).  

DNA was extracted using the CTAB method with 

MiniSpin spin columns, ensuring high-purity DNA. The 20 

μL reaction mixture consisted of 10 μL DNase/RNase-free 

https://www.ffhdj.com/


Functional Food Science 2025; 5(7): 286 - 301 FFS Page 291 of 301 

water, 4 μL MixStable qPCR.5x, 1 μL species-specific 

primer mix (TargetSpecies), and 5 μL DNA template. 

Amplification was performed on a LightCycler 96 system 

(Roche, Germany) using 6-FAM as the fluorescent dye. 

The amplification protocol included: 94 °C for 5 minutes 

(1 cycle), followed by 40 cycles of 94 °C for 30 seconds, 

72 °C for 10 seconds, and 62 °C for 10 seconds. 

The percentage of infected plants was calculated 

based on the number of positive samples, allowing for an 

objective assessment of the phytosanitary status and 

pathogen prevalence. 

Statistical Analysis: Experimental data were statistically 

processed using analysis of variance (ANOVA) at a 

significance level of p ≤ 0.05. The least significant 

difference (LSD) test was applied to compare mean yield 

values. Biochemical analysis results are presented as 

mean values ± standard deviation (SD). 

RESULTS AND DISCUSSION 

Phenological development, productivity, and fruit 

quality: In tomato F1 Lusarpi, treatment with   the 

preparations reduced the period from mass emergence 

to the onset of fruiting by 2–3 days compared to the 

control, while the harvesting period was extended by 2–

3 days. This effect was observed both with individual 

applications and with their combined use (B. subtilis + T. 

viride). In sweet pepper cv. ‘Loshtak’, accelerated fruiting 

was also noted, most prominently under combined 

treatment. 

The positive trend was consistent during both the 

spring and summer-autumn growing seasons, indicating 

the stability of the microbiological complexes' 

effectiveness under different seasonal conditions. Data 

on the duration of phenological phases are presented in 

Table 2. 

Table 2. Duration of phenological phases of vegetable crops depending on the treatment and vegetation period 

N Treatment Days from mass emergence to Duration of harvest, 

days 

a/ b 

flowering 

*a/b 

fruiting 

a/ b 

first harvest 

a/ b 

last harvest 

a/ b 

Tomato "Lusarpi" 

1 Control 66а/ 64b 74а / 73b 112а / 109b 188а / 180b 76а / 71b 

2 B. subtilis 66а / 64b 72а / 70b 109а / 106b 188а / 180b 79а / 74b 

3 T. viride 66а / 64b 72а / 70b 110а / 106b 188а / 180b 78а / 74b 

4 B. subtilis +

 T. viride

66а / 64b 72а / 70b 109а / 106b 188а / 180b 78а / 74b 

Sweet pepper "Loshtak" 

1 Control 81а / 79b 77а / 74b 113а / 111b 199а / 196b 86а / 85b 

2 B. subtilis 77а / 70b 75а / 73b 113а / 110b 200а / 198b 87а / 88b 

3 T. viride 76а / 70b 74а / 72b 111а / 110b 205а / 200b 94а / 90b 

4 B. subtilis +

 T. viride

77а / 70b 74а / 72b 109а / 107b 208а / 205b 99а / 98b 

*a – spring / b – summer-autumn vegetation periods

In addition to accelerating plant development, the 

microbiological complexes significantly enhanced yield 

and improved fruit quality across different growing 

seasons. 

For tomato, treatment with Bacillus subtilis resulted 

in an increase in early yield by 7.0–8.0%, while total yield 

rose by 12.0–12.2%, depending on the season. The 

average fruit weight ranged from 225.5 to 230.0 g. 

Treatment with Trichoderma viride was even more 
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effective, increasing early yield by 7.7–8.0%, total yield by 

13.1–13.3%, and average fruit weight reached 228.5–

233.7 g. The greatest effect was observed with the 

combined application of B. subtilis+T. viride, where early 

yield increased by 7.7–8.7%, and total yield by 15.0–

15.4%, mainly due to an increase in average fruit weight. 

A similar positive trend was noted in sweet pepper. 

The combined use of microbiological preparations led to 

an increase in early yield by 6.5–7.1% and total yield by 

14.6–14.7%. The average fruit weight increased to 144.6–

147.3 g (Table 3). 

Table 3. Yield parameters of vegetable crops depending on the tested treatment and vegetation period 

N Treatment Early yield, kg/m² 

* a/ b

Early yield increase, % 

a/ b 

Total yield, kg/m² 

a/ b 

Total yield increase, % 

a/ b 

Average fruit weight, g (±SD) 

a/ b 

Tomato "Lusarpi" 

1 Control 1.50а / 1.42b - 18.0а / 17.5b - 222.4±4.2а / 218.1±3.0b 

2 B. subtilis 1.60а / 1.52b 8.0а / 7.0b 20.2а / 19.6b 12.2а / 12.0b 230.0±4.6а / 225.5±3.7b 

3 T. viride 1.60а / 1.53b 8.0а / 7.7b 20.4а / 19.8b 13.3а / 13.1b 238.7±5.1а / 228.5±3.5b 

4 B. subtilis +

 T. viride

1.63а / 1.53b 8.7а / 7.7b 20.7а / 20.2b 15.0а / 15.4b 240.2±4.5а / 236.0±3.1b 

LSD05 0.31а / 0.30 b 1.35 а / 1.28 b 

Sweet pepper "Loshtak" 

1 Control 1.27а / 1.24b - 14.4а / 14.3b - 136.4±3.2а / 132.5±3.0b 

2 B. subtilis 1.35а / 1.32b 6.3 а / 6.5b 16.1 а / 16.0b 11.8 а / 11.9b 138.1±3.7а / 135.1±3.4b 

3 T. viride 1.36а / 1.32b 7.1а / 6.5b 16.3а / 16.4b 13.2а / 13.3b 143.4±4.0а / 138.7±3.5b 

4 B. subtilis +

T. viride

1.36а / 1.32b 7.1а / 6.5b 16.5а / 16.4b 14.6а / 14.7b 147.5±4.2а / 144.6±3.5b 

LSD05 0.54 а / 0.44 b 1.55 а / 1.50 b 

*a – spring / b – summer-autumn vegetation periods

Biochemical analysis of fruits demonstrated a 

positive effect of microbiological preparations on the 

quality of tomatoes and sweet peppers. All treatment 

variants showed an increase in the content of dry matter, 

sugars, ascorbic acid, total phenolic compounds, and 

carotenoids compared to the control (Table 4, Figure 1). 

The most pronounced effect was observed with the 

combined treatment of B. subtilis +T. viride, which 

resulted in the highest values of all measured 

parameters. In tomatoes, dry matter content increased 

to 6.35–6.45%, sugars to 3.26–3.28%, ascorbic acid to 

21.60–22.76 mg/100 g, total phenolics to 38.1–45.4 

mg/100 g, and carotenoids to 3.72–3.82 mg/100 g. 

A similar positive trend was recorded in sweet 

peppers, with dry matter content reaching 4.86–5.01%, 

sugars 3.58–3.64%, ascorbic acid 203.25–207.74 mg/100 

g, total phenolics 70.1–76.3 mg/100 g, and carotenoids 

1.57–1.60 mg/100 g. 

This increasing trend was consistent across both 

spring and summer-autumn vegetation periods, 

confirming the stable efficacy of the biopreparations 

under varying cultivation conditions. 
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Table 4. Quality parameters of vegetable fruits depending on treatment and vegetation period (p≤0.05) 

N Treatment Dry matter, % (±SD) 

 a/ b 

Sugars, % (±SD) 

 a/ b 

Ascorbic acid, mg/% (±SD)  

a/ b 

Total phenols, mg/100g (±SD) 

a/ b  

Tomato "Lusarpi" 

1 Control 6.12±0.14а/ 

6.26±0.13b 

3.04±0.08 а /  

3.12±0.05 b 

20.09±0.23 а / 19.77±0.22 b 35.5±1.5 а /  

28.4±.1.2 b 

2 B. subtilis 6.31±0.12 а / 

6.46±0.09 b 

3.25±0,05 а / 

3.31±0,04 b 

21.81±0.17 а / 

20.59±0.18 b 

39.8±1.5. а / 

32.3±.1.3 b 

3 T. viride 6.23±0,15 а / 6.32±0,14 b 3.09±0,03 а / 

3.19±0,02 b 

21.56±0,21 а / 20.58±0,20 b 38.6±1.3 а / 

33.3±1.3 b 

4 B. subtilis +

 T. viride

6.35±0.13 а / 

6.45±0.09 b 

3.26±0,06 а / 

3.28±0,04 b 

22.76±0,16 а / 

21.60±0,18 b 

45.4±1.5а / 

38.1±1.4 b 

Sweet pepper "Loshtak" 

1 Control 4.48±0.22 а / 

4.62±0.19 b 

3.39±0.32 а / 

3.54±0.35 b 

189.05±2.90 а / 

185.20±3.05 b 

60.7±2.4 а / 

56.3±2.2 b 

2 B. subtilis 4.51±0.16 а / 

4.63±0.15 b 

3.55±0.25 а / 

3.52±0.33 b 

191.81±0.17 а / 

190.30±2.65 b 

65.8±2.1 а / 

58.7±1.9 b 

3 T. viride 4.82±0.20 а / 

4.93±0.18 b 

3.52±0.32 а / 

2.58±0.30 b 

196.30±3.60 а / 

192.15±3.10 b 

72.6±2.2 а / 

65.8±2.0 b 

4 B. subtilis +

 T. viride

4.86±0.18а / 

5.01±0.18 b 

3.58±0.24 а / 

3.64±0.35 b 

207.74±0.16 а / 

203.25±2.55 b 

76.3±2.4 а / 

70.1±2.5 b 

*a – spring / b – summer-autumn vegetation periods

Figure 1. Total carotenoid content in tomato and sweet pepper fruits depending on the applied treatment and 

vegetation period (p ≤ 0.05) 
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Our results are consistent with current literature 

data on the high effectiveness of microorganisms from 

the genera Bacillus and Trichoderma in promoting plant 

growth and overall development. 

Several authors have reported that Bacillus spp. 

effectively colonize the rhizosphere by transitioning from 

spores to an active vegetative form and exert a positive 

influence on plants [37–38]. These aerobic, Gram-

positive bacteria employ multiple plant growth-

promoting mechanisms, including the production of 

siderophores that facilitate iron acquisition and 

mobilization, solubilization of poorly available nutrient 

forms (such as nitrogen and phosphorus), synthesis of 

phytohormones and volatile organic compounds, biofilm 

formation, and the production of compounds that 

protect plants against abiotic stress. Collectively, these 

processes contribute to enhanced root system 

development, improved nutrient uptake, and activation 

of metabolic functions, ultimately resulting in 

accelerated plant growth and increased productivity [36, 

43]. 

Fungi of the genus Trichoderma are free-living 

microorganisms widely distributed in the soil and on 

plant roots, where they can act as both symbionts and 

mycoparasites. Trichoderma spp. actively promotes plant 

growth and seed germination through the production of 

phytohormones and enzymes such as indole-3-acetic 

acid (IAA), gibberellin (GA₃), and ACC deaminase. These 

compounds stimulate root system development, 

increase the absorptive surface area of roots, and 

thereby improve plant nutrient uptake. 

In addition, Trichoderma produces a range of 

secondary metabolites, including harzianic acid, which 

has iron-chelating properties that enhance iron 

availability and assimilation by plants. These mechanisms 

contribute to enhanced plant growth, development, and 

productivity, while also increasing plant tolerance to 

environmental stresses [43]. 

Particular attention in the present study should be 

given to the positive impact of microbiological 

treatments on the biochemical composition of fruits, 

especially in terms of enhancing their antioxidant 

activity. Our results clearly demonstrate that the 

application of B. subtilis and T. viride significantly 

increases the content of antioxidant compounds. 

The most pronounced improvements were 

observed in the combined treatment with B. subtilis + T. 

viride. In tomatoes, the content of ascorbic acid 

increased by 9.3–13.3%, total phenolic compounds by 

27.9–34.2%, and carotenoids by 5.4–7.6%, depending on 

the growing season. In sweet pepper, phenolic 

compounds increased by 24.5–25.7%, vitamin C by 9.7–

9.9%, and carotenoids by 10.3–10.6%. 

The obtained results confirm the antioxidant effect 

of microbial preparations, which not only improves the 

nutritional value of the produce but may also enhance 

plant resistance to various stress factors. The synergistic 

effect observed under combined inoculation is likely 

associated with the induction of secondary metabolite 

synthesis, including phenolics, ascorbate, and 

carotenoids. 

Similar mechanisms have been previously described 

by Patloková (2024) and Adedayo (2023), who 

emphasized the important role of microbial 

phytohormones and secondary metabolites in activating 

phenolic biosynthetic pathways [43–44]. Moreover, 

according to Zheng (2024), Trichoderma spp. exhibit not 

only antagonistic activity against phytopathogens but 

also induce systemic resistance in plants, including the 

activation of the antioxidant defense system [24]. 

Nitrate content and phytosanitary assessment: The 

application of microbiological preparations had a 

statistically significant effect (p ≤ 0.05) on reducing 

nitrate content in tomato and sweet pepper fruits 

compared to the control (Figure 2). 

Elevated nitrate content was recorded in the 

control variants and ranged from 128.9 to 130.7 mg/kg 

for tomatoes and from 159.3 to 170.7 mg/kg for sweet 

peppers, depending on the growing season. The lowest 
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nitrate levels were observed with the combined 

application of B. subtilis+ T. viride, reaching 54.3–74.6 

mg/kg in tomatoes and 109.1–125.1 mg/kg in peppers, 

indicating a pronounced synergistic effect of the 

microbial treatment. 

All obtained values were within the established 

sanitary and hygienic standards, confirming the safety of 

the produce for consumption. 

The reduction in nitrate accumulation is likely due 

to improved mineral nutrition and enhanced nitrogen 

uptake efficiency, attributed to active microbial 

transformation of nitrogen forms in the rhizosphere. In 

addition, these effects may be associated with the 

induction of plant anti-stress mechanisms, leading to 

metabolic optimization and decreased nitrate residues 

[36]. 

Alongside improvements in biochemical 

parameters and reduced nitrate accumulation, microbial 

treatments also had a positive impact on the 

phytosanitary condition of plants. In particular, under 

natural infection conditions, a reduction in tomato and 

pepper infestation by major soil-borne pathogens - 

Fusarium oxysporum and Verticillium dahlia - was 

observed (Table 5). 

Figure 2. Nitrate content in tomato and sweet pepper fruits (p ≤ 0.05) 

Table 5. Phytosanitary assessment of plants depending on the applied treatment 

N Treatment Percentage of infected plants 

2024 2025 2024 2025 

Verticillium wilt (V.  dahliae) Fusarium wilt (F. oxysporum) 

Tomato Pepper Tomato Pepper Tomato Pepper Tomato Pepper 

1 Control 12.9 17.5 18.4 20.5 22.4 0 28.2 0 

2 B. subtilis 10.8 13.0 6.1 8.2 17.7 0 10.6 0 

3 T. viride 8.1 12.3 3.7 7.5 15.2 0 9.4 0 

4 B. subtilis + T. 

viride 

7.0 9.3 2.5 4.4 10.5 0 5.3 0 
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Verticillium wilt incidence in tomatoes decreased 

from 12.9% in the control (2024) to 10.8% in 2024 and 

further to 6.1% in 2025 with B. subtilis treatment, 

demonstrating a clear positive effect over time. Similarly, 

Fusarium wilt incidence decreased from 22.4% in the 

control to 17.7% in 2024 and 10.6% in 2025.  

Treatment with T. viride was even more effective, 

reducing Verticillium wilt incidence from 12.9% (control, 

2024) to 8.1% in 2024 and 3.7% in 2025. Fusarium wilt 

rates dropped from 22.4% to 15.2% in 2024 and 9.4% in 

2025. These results suggest that T. viride may be more 

effective than B. subtilis when applied individually. 

The most pronounced disease reduction was 

observed with the combined application of B. subtilis+T. 

viride, where Verticillium wilt incidence decreased from 

12.9% (control, 2024) to 7.0% in 2024 and 2.5% in 2025. 

Fusarium wilt declined from 22.4% to 10.5% in 2024 and 

5.3% in 2025. This synergistic effect highlights the benefit 

of using a combined microbial approach for improved 

phytopathogen management. 

In sweet pepper plants, Verticillium wilt infection 

was 17.5% in the control group in 2024 and increased 

slightly to 20.5% in 2025. Application of B. subtilis 

lowered infection levels to 13.0% and 8.2%, respectively, 

while T. viride further reduced disease incidence to 12.3% 

in 2024 and 7.5% in 2025. The greatest improvement was 

again achieved with the combined treatment, where the 

incidence dropped from 17.5% (control, 2024) to 9.3% in 

2024 and from 20.5% (control, 2025) to 4.4% in 2025. 

Notably, no cases of Fusarium wilt were detected in 

sweet pepper plants under any treatment or in the 

control throughout the experiment. This may reflect the 

inherent resistance of the pepper cultivar, as well as the 

protective influence of the microbiological treatments. 

To enhance the accuracy of phytosanitary 

diagnostics, molecular identification of phytopathogens 

was performed using qPCR with species-specific primers. 

Analysis of plant tissue samples allowed for the detection 

of V. dahliae and F. oxysporum DNA, thereby eliminating 

the possibility of false-negative results. 

The use of qPCR enabled the detection of pathogens 

at early infection stages, including latent infections that 

do not exhibit external symptoms, thus providing a more 

accurate and timely phytosanitary assessment. The high 

sensitivity of the method (up to 10² DNA copies per gram 

of soil or plant material) allowed for the detection of even 

minimal pathogenic loads in the rhizosphere. 

In our study, the high efficiency of the qPCR method 

for detecting V. dahliae and F. oxysporum in samples was 

confirmed. For V. dahliae, the amplification (E) was 

98.7%, the slope of the standard curve was –3.514, and 

the coefficient of determination (R²) was 0.996. For F. 

oxysporum, the corresponding values were: efficiency E- 

98.4%, slope –3.510, and R² - 0.994. These parameters 

fall within the accepted normative ranges, indicating 

optimal reaction conditions and high method reliability. 

The obtained data are consistent with other studies 

demonstrating that qPCR exhibits high sensitivity and 

specificity in detecting phytopathogens in plant and soil 

samples [45]. 

The results obtained in our study are in full 

agreement with previously published findings confirming 

the bioprotective and growth-promoting activity of 

microbial agents. Trichoderma spp. are well known as 

powerful inducers of systemic resistance and plant 

growth stimulators due to the synthesis of 

phytohormones and secondary metabolites [44]. Bacillus 

subtilis, in turn, contributes to biocontrol through the 

production of lipopeptides, antibiotics, and signaling 

molecules [46], which aligns with the observed reduction 

in Fusarium and Verticillium infections in our 

experiments. 

Earlier, Choudhary and Johri (2009) emphasized 

that successful colonization of plant roots by probiotic 

microorganisms is a prerequisite for both biocontrol 

efficacy and plant growth promotion. He noted that 

Bacillus spp. not only actively colonize the rhizosphere 
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and form microcolonies in zones of root exudation, but 

also play a crucial role in the activation of induced 

systemic resistance (ISR), providing protection against a 

wide range of pathogens, including fungal, bacterial, and 

viral diseases. Furthermore, the author highlighted the 

potential of Bacillus spp. to protect tomato and pepper 

crops from root rots, blossom-end rot, nematodes, and 

foliar phytopathogens, which fully corresponds with our 

findings [47]. 

Recent studies by Wu et al. (2024) demonstrated 

that B. subtilis induces the formation of polyphenolic 

metabolites with fungicidal properties [48], while Harish 

et al. (2023), using KEGG pathway mapping, confirmed 

the activation of antifungal metabolic pathways [49]. 

Research by Harman et al. (2004) significantly 

expanded our understanding of the mechanisms 

underlying the action of Trichoderma spp. as symbiotic 

rather than merely antagonistic organisms. The author 

showed that specific strains of Trichoderma can trigger 

both local and systemic immune responses in plants, 

analogous to systemic acquired resistance (SAR) and 

rhizobacteria-induced systemic resistance (ISR). These 

effects are mediated by signaling peptides, proteins, and 

low-molecular-weight compounds that activate plant 

defense gene expression. Furthermore, Trichoderma spp. 

are capable of forming stable symbiotic associations with 

plant roots, penetrating surface root cells, and inducing 

complex metabolic changes that promote plant growth, 

productivity, and tolerance to abiotic stresses [50]. 

The study by Behiry (2023) highlights the high 

efficacy of Trichoderma against Rhizoctonia solani, one of 

the main pathogens responsible for tomato root rot, 

along with Fusarium oxysporum and Verticillium dahliae. 

According to the author, the disease index in 

Trichoderma-treated plants was only 16.0%, compared 

to 78.7% in the untreated control, indicating a 

pronounced protective effect of the biopreparation [51]. 

These findings are consistent with our results, where 

treatment with T. viride reduced tomato infection by F. 

oxysporum from 22.4% (control) to 9.4% and by V. 

dahliae from 12.9% to 3.7%, corresponding to a decrease 

of 58.0% and 71.3%, respectively. 

It is also worth emphasizing the potential of 

Trichoderma viride in the control of viral plant diseases. 

According to Aseel, D.G. (2023), foliar application of this 

strain on potato plants led to significant improvement in 

morphophysiological parameters and a substantial 

reduction in the concentration of potato virus Y in plant 

tissues [52]. 

Although numerous studies have examined the 

individual use of Bacillus subtilis and Trichoderma viride, 

research on their combined application under 

greenhouse conditions for crops like tomato and sweet 

pepper remains limited. This study demonstrates that 

dual treatment improves yield, reduces nitrate 

accumulation, and enhances the phytosanitary condition 

of plants, offering a novel and sustainable microbiological 

approach. It is the first study conducted in Armenia to 

investigate the combined use of PGPR and PGPF locally. 

The unique integration of molecular, biochemical, 

and phenological data provides a comprehensive 

evaluation of treatment efficacy. Thus, the collective data 

obtained in this study indicate the high efficacy and 

promising potential of B. subtilis and T. viride both as 

individual strains and in combination. The observed 

synergistic effect from their joint application underscores 

the rationale for developing integrated biological agents 

aimed at plant protection and growth, aligned with the 

principles of sustainable agriculture. 

CONCLUSION 

The application of microbial complexes based on Bacillus 

subtilis and Trichoderma viride demonstrated a 

comprehensive positive effect on the growth, 

development, and productivity of tomatoes and sweet 

peppers under protected cultivation conditions. 

Accelerated phenological phases, extended fruiting 

periods, increased early and total yields, as well as 

improved fruit quality were observed. The use of these 

https://www.ffhdj.com/


Functional Food Science 2025; 5(7): 286 - 301 FFS Page 298 of 301 

biopreparations also contributed to a reduction in nitrate 

content in the harvest, enhancing its nutritional and 

ecological value. A significant decrease in plant infection 

by Fusarium oxysporum and Verticillium dahliae indicates 

the strong antagonistic activity of the treatments and 

their potential for use in biological crop protection. 

These findings confirm the promising potential of 

PGPR/PGPF approaches as sustainable alternatives to 

chemical agents in both intensive and organic farming 

systems. Nevertheless, to fully unlock the capabilities of 

microbial agents, further field trials and technology 

adaptations to diverse agroclimatic conditions are 

required. 

List of abbreviations: Scientific Centre of Vegetable and 

Industrial Crops - SCVIC, MEofRA – Ministry Economy of 

the Republic of Armenia, PGPR- Plant Growth-Promoting 

Rhizobacteria, PGPF- Plant Growth-Promoting Fungi, TR - 

technical ripening, BR- biological ripening, g- gram, mg- 

milligram, FW- fresh weight. 
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