Open Access

The development and characterization of a plant-based functional beverage using Rebaudioside-A

Laura O'Sullivan¹, Mindani Induwara Watawana^{1,2,3}, Daniel Granato^{1,2,3}, and Fabiana A. Hoffmann Sarda^{1,2,3}

¹Department of Biological Sciences, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland; ²Health Research Institute, University of Limerick, Limerick, Ireland; ³Bernal Institute, University of Limerick, Limerick, Ireland.

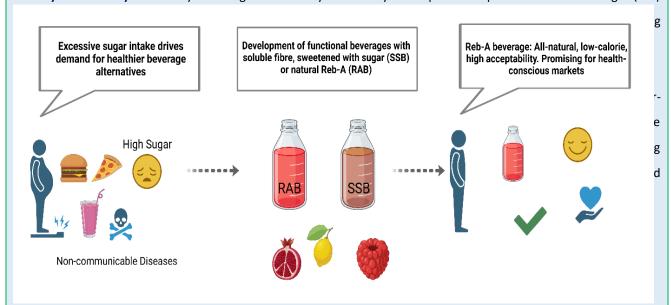
*Corresponding Author: Dr. F.A. Hoffmann Sarda. Department of Biological Sciences, Faculty of Science and Engineering, University of Limerick, Castletroy, Co. Limerick, V94 T9PX, Ireland.

Submission Date: June 19th, 2025, Acceptance Date: September 1st, 2025, Publication Date: September 3rd, 2025

Please cite this article as: O'Sullivan L., Watawana M. I., Granato D., Sarda F. A. H. The development and characterization of a plant-based functional beverage using Rebaudioside-A. Functional Food Science 2025; 5(9): 415-435.

DOI: https://doi.org/10.31989/ffs.v5i9.1682

ABSTRACT


Background: Excessive sugar intake is a major global health issue, fuelling non-communicable diseases and driving consumer demand for nutrient-rich, low-calorie beverages without artificial additives. Functional beverages (FB) present an effective solution by conveniently delivering targeted health benefits. Rebaudioside-A (Reb-A), a natural, zero-calorie sweetener derived from *Stevia rebaudiana*, provides a promising alternative to sugar and artificial sweeteners, enabling the development of all-natural, low-calorie FBs.

Objective: This study aimed to develop a FB with soluble fibre, in two versions: one sweetened with sugar (SSB) and another with Reb-A (RAB), and compare their sensory, physicochemical, and functional properties.

Methods: Both SSB and RAB were prepared from pomegranate, raspberry, and lemon juices, as well as green tea, coconut water, and inulin. The beverages were pasteurized (85°C, 1 min) and stored at 3–4°C. Analyses included pH, total soluble solids (TSS), water activity, colour, antioxidant properties (FRAP, total phenolic content - TPC, DPPH, and total anthocyanin content - TAC), and sensory evaluation using a 9-point hedonic scale for taste, odour, colour, and overall acceptance.

Results: The RAB finished product demonstrated higher antioxidant activity, with higher DPPH scavenging (p<0.05) and increased FRAP values (p<0.05) compared to SSB. Both beverages presented the same pH, TPC, TAC, water activity levels, and inulin content (5.5 g/serving). Sensory evaluations revealed an overall preference of 70.5% for SSB (p = 0.001), although female participants (42% of the cohort) showed no significant preference. Acceptability indices were high for both (SSB: 83.4%, RAB: 76.9%; p = 0.003), with RAB scoring above 6/9 across all attributes. There were no differences in colour or odour between the two beverages

Novelty of the Study: This study is among the first to systematically develop and compare functional beverages (FBs)

Graphical Abstract: The Development and Characterization of a Plant-based Functional Beverage using Rebaudioside-A. Created with BioRender.com

©FFC 2025. This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0)

INTRODUCTION

The consumption of sugar is increasingly widespread across the population, largely due to its presence in a wide variety of foods and beverages [1]. Excess sugar consumption has been related to the development of many chronic diseases such as obesity, Alzheimer's, type 2 diabetes mellitus (T2DM), and cardiovascular diseases (CVDs) [2-5]. To combat the rising challenge of excessive sugar consumption, both governments and manufacturers have introduced a range of preventive

strategies, such as sugar taxes and reliance on sugar substitutes [6,7]. Sugar substitutes—including artificial sweeteners such as aspartame and sucralose, as well as plant-based options such as stevia and monk fruit—offer the sweetness of sugar with fewer or no calories [8]. These strategies, when combined, aim to lower sugar consumption at both the population and individual levels, promoting better public health outcomes.

Sugar-sweetened beverages (SSB) are the largest source of added sugars in the diet with a 355 mL serving

of soda typically providing 150 calories and 35g of sugar [9] Consumers' awareness of sugar's involvement in chronic diseases and weight gain has driven significant expansion in the low- and no-calorie beverage market, promoting the use of sweeteners in the development of beverages [10]. Artificial sweeteners have been previously reported to cause adverse health implications such as gastrointestinal symptoms, cardiovascular impacts, neurological effects, and cancer [11-14]. Consumers are increasingly seeking drinks that not only eliminate added sugars but also incorporate natural sweeteners, offering a healthier alternative without compromising on taste [15-17] The trend of all beverages for the future is that they are sugar-free or naturally-sweetened, while enhancing health [18-19].

Stevia (Stevia rebaudiana Bertoni) is an ancient, perennial shrub of the Asteraceae family, commonly found in South America, and has been used for generations as the "sweet leaf", as its leaves synthesize sweet compounds known as steviol glycosides [20]. Rebaudioside-A (Reb-A) is a steviol glycoside extracted from the leaves of the stevia plant which is 250-450 times sweeter than sugar, and is a useful natural sweetener for beverage production [20-21]. Approved in the EU as food additive E960, Reb-A is considered safe, with an acceptable daily intake (ADI) of 4 mg/kg body weight [22-23]. Besides sweetness, Reb-A has previously displayed antioxidant properties and has exhibited beneficial effects towards obesity, diabetes, and cardiometabolic health when consumed in safe doses [24-27]. It provides sweetness without adding calories, supporting the development of functional foods [21]. Reb-A is more potent at lower temperatures, enhancing its suitability for beverages [21]. Although some steviol glycosides can have bitter or licorice-like aftertastes, they are widely used in beverage development, with Reb-A being preferred for its cleaner taste, to reduce sugar in drinks, thereby contributing to better public health [28-30].

A functional beverage (FB) is any non-alcoholic drink that provides health benefits beyond basic nutrition via bioactive components from plant, animal, marine, or microbial sources [31]. The global FB market is projected to reach over \$208 billion by 2027 [32]. These beverages aim to support immune, gut, and cardiovascular health, or assist with weight management and type-2 diabetes [18,33-37]

Plant-based FBs made from fruit and vegetable juices are rich in essential nutrients and phenolic compounds that can exert positive health benefits [31]. Some of the more prominently used ingredients in these FBs are 'superfruits' as they are rich in bioactive compounds that have antioxidant effects [34]. Plantbased beverage production commonly involves combining fruits, vegetables, and herbs with other ingredients, such as fibre, minerals, and vitamins [34]. Thus, a variety of fruit juices, green tea, and a prebiotic fibre were selected for this FB development, as their combination is beneficial for developing a nutrient-dense functional beverage (FB) [38]. Pomegranate (Punica granatum L.) juice is known to have a high polyphenolic content (anthocyanins, gallic acid, flavonoids, ellagic acid and others), which are linked to antioxidant, antiinflammatory, and cardioprotective effects [39-42]. Raspberries (Rubus idaeus L.), known for their high vitamin C content (28-34 mg/100 g) and consumerfriendly flavour, help achieve the recommended daily vitamin C intake for Irish adults (40 mg) [43-45]. Lemon (Citrus limon L.) juice contains vitamin C, citric acid, and polyphenols, including eriocitrin, which offers intestinal benefits and acts as a natural preservative that limits enzymatic browning in pomegranate juice [46-48]. Lime juice can mask the bitter aftertaste of stevia, thereby improving the taste; therefore, lemon juice was used to attempt to replicate this effect [49]. Coconut (Cocos nucifera L.) water provides electrolytes and supports hydration and digestion [50-52]. Green tea (Camelia sinensis) supplies caffeine and catechins, especially epigallocatechin-3-gallate (EGCG), and has demonstrated benefits for cancer, hypertension, obesity, diabetes, and Alzheimer's disease when consumed in recommended amounts [53-62].

Dietary fibre is a vital component of a healthy diet, and its inclusion in a beverage would prove beneficial for public health [63-65]. Development of a FB to target the common fibre deficiency in Irish adults, who average 19 g/day compared to the recommended 25 g/day could help reduce the risk of colorectal cancer [64,66,67]. Inulin, a prebiotic fibre, supports beneficial gut bacteria and improves metabolic health, satiety, and mineral absorption, and is a perfect candidate to add to beverages to provide health benefits [68-69].

This study aimed to develop a novel Reb-A sweetened beverage (RAB) for the Irish market and compare it to a traditional SSB of the same ingredients to assess its market potential. These all-natural FBs were compared and evaluated in terms of their sensory, antioxidant, and physicochemical properties to characterise the beverage's potential health effects and properties.

MATERIAL AND METHODS

Ingredients: Reb-A sample (98% pure) was purchased from the KoRo company(Berlin, Germany). Inulin was provided by Orafti HP® Inulin (Beneo, Belgium). Green tea (Barry's, Cork, Ireland), coconut water, caster sugar, raspberries (Driscolls Maravilla variety), lemons, and pomegranates were purchased from local supermarkets.

Chemical Reagents: 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical, 2,4,6-Tris(2-pyridyl)-s-triazine (TPTZ), gallic acid, and ascorbic acid were obtained from Sigma-Aldrich-Merck (Darmstadt, Germany). Hydrochloric acid (HCl) was purchased from Fluka (USA). Folin-Ciocalteu's phenol reagent, methanol, and ferric chloride hexahydrate were acquired from Merck KGaA (Darmstadt, Germany). Potassium chloride, acetic acid

(glacial), sodium carbonate, and sodium acetate were purchased from Scientific Laboratory Supplies (Dublin, Ireland). Ultra-pure water was used in the analytical determinations.

Beverage Preparation: Two beverages were prepared: a RAB and a traditional SSB (control). Fruits were juiced (lemon and pomegranate by hand-press, raspberries by blender), filtered (Mesh size 1.5 mm), and measured into relevant portions. Green tea was brewed (6 bags in 100 mL water at 60 °C for 3 minutes) and combined with the juices and coconut water. Inulin was added with stirring, followed by sugar or Reb-A as appropriate. Pre-sterilized bottles were filled, pasteurized at 85 °C for 1 minute in the 'Milky FJ 15 (230V) pasteurizer, rapidly cooled, and stored at 3–4 °C.

The ingredient composition of RAB and SSB was systematically adjusted to ensure both formulations yielded an equivalent final volume of 250 mL. While both beverages share core components—coconut water, pomegranate juice, lemon juice, raspberry juice, green tea, and inulin—their relative proportions differ. RAB contains higher volumes of each juice and coconut water compared to SSB, reflecting increases in their respective percentages (e.g., coconut water: 58.7% in RAB vs. 51.05% in SSB). Notably, SSB utilizes sugar (13.18%) as a sweetener, whereas RAB excludes sugar and instead incorporates Reb-A (0.07%), a stevia-derived sweetener. These modifications in ingredient quantities and sweetener types were made to compensate for the absence of sugar in RAB, thereby maintaining the same beverage volume in both formulations (Supplementary Table 1).

Physicochemical analysis: pH, Total soluble solids (TSS), and Water activity (a_w)

The pH analysis was conducted using an Eti Ltd 8000 pH meter (Scientific Laboratory Supplies, Dublin, Ireland), and the brix degree (°Brix) was used as an indicator of TSS percentage with a portable VWR ATC handheld

refractometer (VWR Avantor, Dublin, Ireland). The aw of the beverages was measured using an AquaLab Series 3 water activity meter (Decagon Devices Inc, Pullman, Washington, USA). *Inulin Stability and Sugar Analysis*

The stability of inulin was evaluated through sugar composition analysis. Sugar analysis was performed by Beneo GmbH (Mannheim, Germany) using High-Performance Liquid Chromatography (HPLC), following the official AOAC method 997.08. This method is specifically validated for the quantification and characterization of inulin and related sugars.

Colour analysis: Colour of the beverages was measured by reflectance using a portable colourimeter (Model CM-700d, Konica Minolta), following the protocol by [70], and calibrated using a standard white reflector plate where white $L^* = 100$. Results were expressed using a CIE (L^* , a^* , b^*) system where L^* - lightness, a^* (redness-greenness), b^* (yellowness-blueness) The colour intensity (C^*) and the total colour difference (ΔE^*) were calculated using the following formulas from [71,72].

Colour Intensity (C*):

$$(C^*) = \sqrt{[(a^*)^2 + (b^*)^2]}$$

• The total colour differences (ΔE*):

$$(\Delta E^*) = \sqrt{[(\Delta L^*)^2 + (\Delta a^*)^2 + (\Delta b^*)^2]}$$

[Where
$$\Delta L^* = (L2^*-L1^*)$$
, $\Delta a^* = (a2^*-a1^*)$, and $\Delta b^* = (b2^*-b1^*)$]

Antioxidant analysis: Antioxidant analysis of the final beverages formulated (SSB and RAB) was carried out. Estimated values were calculated for the normalized RAB formulation (Supplementary Table).

FRAP determination: The ferric reducing antioxidant power (FRAP) determination was performed following the method described by [73]. Freshly prepared FRAP reagent and samples were incubated in a 96-well plate in

the dark for 30 minutes. Absorbance was measured at 593 nm, and results were expressed as ascorbic acid equivalents (mg AAE/L).

Total phenolic content (TPC): The samples were assessed for their TPC using the Folin-Ciocalteau (FC) assay, following [74,75]. Samples (25 μ L) were added to 200 μ L of pure water and 25 μ L of the FC reagent. After 5 minutes, a 10% sodium carbonate solution was added (25 μ L). The absorbance was measured at 725 nm after a 60-minute incubation in the dark. The results were expressed as gallic acid equivalents (mg GAE/L).

2,2-diphenyl-1-picrylhydrazyl (DPPH) assay: This analysis was conducted following [76] with some modifications. Samples (40 μ L) was mixed with 260 μ L of a 0.10 mmol/L methanolic solution of DPPH, and incubated in the dark for 30 minutes at 25 °C. The absorbance was measured, and results were expressed as ascorbic acid equivalents (mg AAE/L).

Total monomeric anthocyanins content (TAC): TAC determination was conducted using the differential pH method as described by [77] with modifications. The sample (20 μ L) was mixed with 180 μ L of a pH 1.0 (0.025 M) solution of potassium chloride and 180 μ L of a pH 4.5 (0.04 M) solution of sodium acetate separately. The absorbance was measured at 520 and 700nm spectrophotometrically, results were expressed as mg of cyanidin-3-glucoside equivalents per L of beverage (mg CYE/L)

Sensory analysis: Ethical approval was granted for this study under the number [2024_06_07_S&E] by the Faculty of Science & Engineering Research Ethics Committee at the University of Limerick.

A sensory analysis study was conducted to assess the acceptance of the beverages and to analyse the preference between the traditional SSB and the RAB. Panellists completed an acceptance test using a 9-point hedonic scale, ranking the samples from 1 (dislike extremely) to 9 (like extremely) to rate the colour, taste, odour, and overall impression. The panellists also participated in a preference test, indicating which sample they preferred. The sensory trials were conducted in sensory booths and all samples were coded with different

three-digit numbers to ensure blinding. Each panellist was provided with two shot glasses containing 15 mL of the different beverages (SSB, RAB).

The acceptability index (AI) was calculated to assess the overall acceptability of each parameter for each beverage using the following formula:

$$AI(\%) = A \times 100/B$$

(A = mean grade obtained for the product; B = maximum grade given to the product)

Statistical analysis: Data was tested for normal distribution using the Shapiro-Wilks test, to distinguish data between parametric and non-parametric, and appropriate tests were performed. The results obtained throughout the experiment were subjected to analysis of variance (ANOVA) for parametric data, or the Mann-Whitney U for non-parametric data to determine whether there was a statistical significance between

samples (p<0.05) using SPSS statistical software version 29.0.1.0 (171).

RESULTS

Physicochemical Analysis: Table 1 presents the results of the pH, TSS (°Brix), and water activity of the RAB and SSB after pasteurisation. The data before Pasteurisation can be seen in Supplementary Table 2.

Table 1. pH, water activity, 'Brix and Inulin stability values of SSB and RABs after pasteurisation.

Test	Beverage type	After Pasteurisation				
рН	SSB	3.39 ± 0.00				
	RAB	3.39 ±0.00				
Water Activity (a _w)	SSB	0.97 ± 0.00				
	RAB	0.98 ± 0.01				
°Brix	SSB	20.50 ± 0.71				
	RAB	8.05 ± 0.07				
Sugar content (g/100 mL of sample)						
Fructose	SSB	4.0				
	RAB	2.0				
Glucose	SSB	3.9				
	RAB	1.8				
Sucrose	SSB	8.7				
	RAB	0.0				
Inulin stability (g/100 mL of sample)						
Fructan	SSB	2.2				
	RAB	2.2				

Note: Results for pH, Water Activity (aw), °Brix are expressed as the mean ± standard deviation (SD) as results were measured in triplicate. *ANOVA was applied to assess differences between beverages and the effect of pasteurisation as data is parametric*).

After pasteurization, both the SSB and RAB exhibited identical pH values of 3.39. The water activity was significantly higher in the Reb-A beverage (0.98 \pm 0.01) compared to the Sugar beverage (0.97 \pm 0.00) (p-value<0.001). Similarly, the "Brix value was significantly higher in the SSB (20.50 \pm 0.71) than in the RAB (8.05 \pm 0.07). Overall, while the pH remained consistent between the two beverages, the RAB showed significantly increased water activity and lower "Brix compared to the SSB.

Inulin stability results indicate that both the SSB and RABs contained 2.2 g of inulin per 100 mL, which equates to 5.5 g per 250 mL serving after pasteurization. Sugar

analysis revealed that the SSB contained a substantially higher sugar content, reflecting the added sugars in its formulation. The RAB, on the other hand, contained only a small amount of naturally occurring sugars, consistent with its use as a non-nutritive sweetener.

Colour analysis: Colour analysis is important in beverage development as it affects the judgement of consumers acceptance of a product, quality perception, and purchase decisions [78,79] . The beverage was pink-coloured which was attributed to the anthocyanins from the pomegranate and raspberries [80-82].

Table 2. Colour values (L*, a*, b*), colour intensity (C*), and total colour difference (Δ E*)

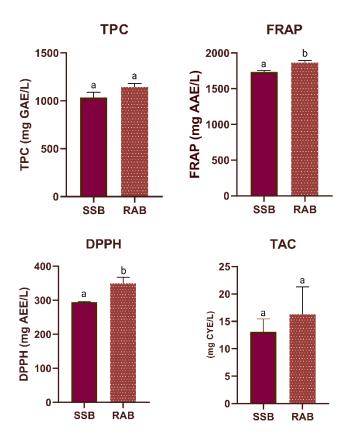
Beverage	L*	a*	b*	C*	ΔΕ*
SSB	24.88 ± 0.66	12.11 ± 0.82	3.81 ± 0.41	12.70	-
RAB	22.74 ± 1.30	11.73 ± 1.03	3.49 ± 0.51	12.24	-
SSB vs RAB	-	-	-	-	2.20

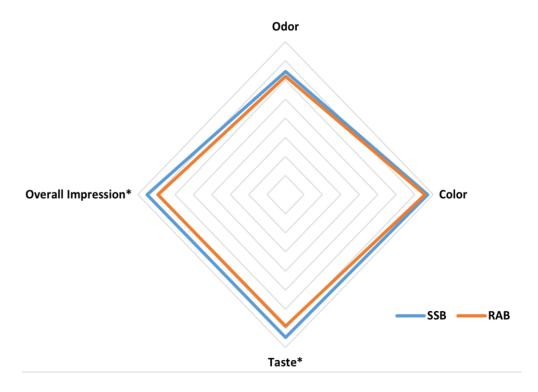
Note: Results for L*, a*, and b* are expressed as mean \pm SD from triplicate measurements, Colour differences are unrecognizable (0 < $\Delta E^* < 1$), experienced observer can perceive the differences (1 < $\Delta E^* < 2$), inexperienced observer can perceive the differences (2 < $\Delta E^* < 3$), Every observer can easily see the difference (3.5 < $\Delta E^* < 5$), and an observer recognizes two different colours ($\Delta E^* > 5$) [71].

After pasteurisation, the colour difference between both beverages was slightly noticeable for observers (ΔΕ*=2.20) and this difference had significantly reduced compared to the beverages before pasteurisation (See supplementary Table 3). An independent t-test revealed no significant differences in colour parameters (L*, a*, b*) between the two beverages (p-value > 0.05). Pasteurisation seemed to reduce the colour difference between the SSB and RAB, potentially due to the

potential caramelisation of sugar in the SSB causing darkening [71].

Antioxidant analysis: The antioxidant potential of the SSB and the RAB were assessed through four different antioxidant assays. The summary of the results for each antioxidant assay is featured in Figure 1 and related data in Supplementary Table S4.




Figure 1. Antioxidant assay results for SSB and RAB. RAB exhibited significantly better DPPH radical scavenging and FRAP activities than the SSB (p-value < 0.05). Although the RAB has higher TAC values ($16.31 \pm 5.0 \text{ mg M3G/L}$) compared to the sugar beverage ($13.08 \pm 2.37 \text{ mg M3G/L}$), there is no significant difference in the TAC between the beverages (p-value > 0.05). (Created in BioRender. Hoffmann Sarda, F. (2025) https://BioRender.com/cqv/9s9) (Note: Statistical significance is determined by the letters a and b)

When comparing the beverages, there was no significant difference between the TPC of either beverage (p-value>0.05). However, the RAB exhibited significantly better DPPH radical scavenging and FRAP activities than the SSB (p-value < 0.05). Although the RAB has higher TAC values (16.31 \pm 5.0 mg M3G/L) compared to the sugar beverage (13.08 \pm 2.37 mg M3G/L), there is no significant difference between the beverages' TAC (p-value>0.05).

When antioxidant activities were also calculated on an equivalent fruit/tea extract basis (Supplementary Table S5), values for SSB and RAB were highly similar across all assays; however, given the higher fruit extract content in the RAB formulation, a typical serving would deliver greater total antioxidant activity in a real-life consumption scenario.

Sensory analysis: A sensory analysis was conducted to compare the SSB and RAB with 103 participants aged 18 and above. Of the participants who conducted the trial, 15 participants' results were excluded from the analysis (incomplete answers), and 88 were included in the final analysis (See Supplementary Figure S1 for participant information). The average age of the 79 participants who entered results was 31.9 ± 10.6 as 9 participants did not disclose their age.

Sensory Acceptance Test: The results for the overall impression parameter were based on 84 participants as 4 people did not input any result. Summary of the sensory analysis results for each parameter for the SSB and RAB is provided in Supplementary table S6.

Figure 2. Spider diagram for the SSB and the RAB. This diagram displays the mean results for the following parameters: odour, colour, taste, and overall impression. Odour: No significant difference between beverages (p-value=0.310). Colour no significant difference in colour scores between the beverages (p = 0.591). There was a significant difference between the SSB and RAB's taste and overall impression scores (p = 0.001), with the SSB receiving better scores.

Odour was the lowest-ranked parameter for both beverages, with no significant difference between beverages (p-value=0.310), but it showed the highest SD and CV values, indicating variability amongst participants' results.

There was no significant difference in colour scores between the beverages (p = 0.591), aligning with the minor colour difference observed ($\Delta E^* = 2.20$) in the colour analysis. Both beverages showed consistent and positive colour scores, with the lowest standard deviation, variance, and coefficient of variation.

There was a significant difference between the SSB and RAB's taste and overall impression scores (p=0.001), with the SSB receiving better scores. While some participants rated both beverages as excellent (score of 9), both also received low scores (minimum of 2) for

taste, indicating high variability and diverse sensory perceptions among participants.

The mean scores for each parameter were higher overall for the SSB but the RAB still had positive sensory results. The spider diagram in Figure 2 illustrates the mean sensory analysis results for the SSB and RAB across each of the assessed parameters.

Effect of gender on acceptance test results: The sensory results were analysed to assess whether gender influenced the results. The analysis revealed no significant differences between male and female scores for odour, taste, or overall impression; however, a significant difference was noted concerning colour (p-value =0.047).

Mean Rank Scores for Sensory Parameters by Gender

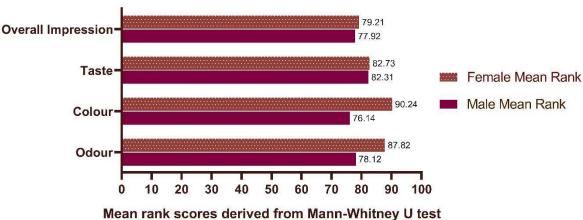


Figure 3. The mean rank scores for each sensory parameter for males and females derived from the Mann-Whitney U Test. A significant difference was observed in the colour ratings, with females rating the colour higher than the males (p = 0.047). No significant differences were found for the rankings of odour (p = 0.185), taste (p = 0.954), or overall impression (p = 0.954). 0.853).

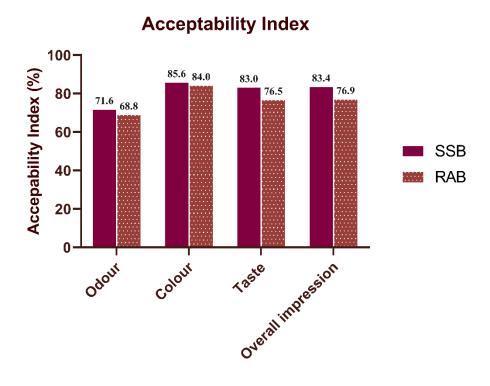


Figure 4. The AI (%) for odour, colour, taste, and the overall impression of both the SSB and RAB amongst the 88 participants of the sensory analysis. There were no significant differences between beverages odour (p-value=0.310). Significant differences were recorded in taste (p-value= 0.001) and overall impression (p-value= 0.003).

Acceptability Index

The acceptability index (AI) was calculated to assess the overall acceptability of each parameter for each beverage.

For a product to be considered accepted, the AI value should be >70% [83]. The SSB had higher AI values across all parameters compared to the RAB, displaying higher acceptability. The SSB's odour AI was 71.6%, while the RAB odour was 68.8%, which is near the acceptability threshold. As there were no significant differences between the beverages' odour (p-value=0.310), both are acceptable. Significant differences were recorded in taste (p-value=0.001) and overall impression (p-value=0.003).

Preference Test: 88 panellists completed a simple preference test by selecting their preferred sample, a method known to predict consumer behaviour without using numerical scales [84]. The minimum number of correct judgments needed for statistical significance, as outlined by Lawless and Heymann (2010) [85], is provided in Supplementary Figure S2.

62 of the 88 participants preferred the SSB, accounting for 70.5% of all participants. The probability test confirmed that the SSB was significantly preferred over the RAB, as more than 57% of the participants preferred the SSB, which coincided with the AI result indicating that the SSB was more accepted. Of these 62 participants who preferred the SSB, 36 were male which is 80% of all males involved in the study. The SSB was preferred by 24 females (64.9%) but these numbers did not meet the threshold for statistical significance preference cannot be established. Research suggests females are generally more inclined to choose healthier options [86]. Overall, 26 out of 88 participants (29.5%) preferred the RAB, including 13 females (35.1%), 9 males (20%), and 4 undisclosed.

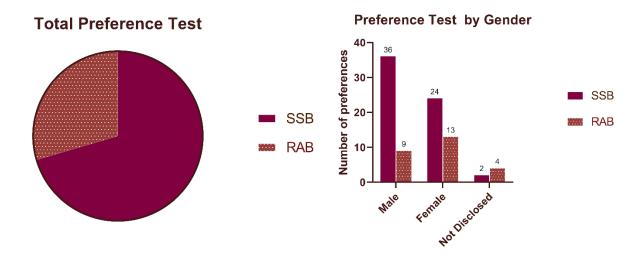


Figure 5. Preference of SSB and RAB; pie chart of summary (left) and bar chart summary of gender preference (right)

DISCUSSION

This study evaluated how sweetener type influenced the physicochemical, antioxidant, and sensory properties of two functional beverages—a sucrose-sweetened control (SSB) and a Rebaudioside A formulation (RAB)—and identified distinct differences between them. Both beverages maintained a low pH, ensuring microbial safety. The pH values for both beverages are below the critical pH value of 4.6, which is a recognised limit to control spore-forming pathogenic bacteria [87].

Raspberry juice is reported to have a pH value of 3.04, pomegranates have values ranging between 2.87 - 3.77, and lemon juice has low pH values (2.2-2.7) due to the high content of citric acid [88-91]. The inclusion of these fruits in the generation of a FB is advantageous for quality control as the FB is below the critical pH value.

Both beverages maintained a low pH, ensuring microbial safety. The pH values for both beverages are below the critical pH value of 4.6, which is a recognised limit to control spore-forming pathogenic bacteria [87].

Raspberry juice is reported to have a pH value of 3.04, pomegranates have values ranging between 2.87-3.77, and lemon juice has low pH values (2.2-2.7) due to the high content of citric acid [88-91]. The inclusion of these fruits in the generation of a FB is advantageous for quality control as the FB is below the critical pH value.

Water activity (a_w) is a crucial measurement in food quality control, as it is related to the stability and growth of microorganisms, as well as the chemical [92,93]. RAB consistently exhibited higher water activity than SSB, a result of sugar's well-known ability to lower water activity and thus inhibit microbial growth [94]. Although this could suggest a higher risk of microbial spoilage in RAB, the low pH of both beverages acts as a critical barrier, reducing this risk in practice.

Inulin stability is known to be affected by food processing factors such as pH and temperature, where at an acidic pH (1-3), hydrolysis of inulin increases with increasing temperature and heating time [95]. Several studies have displayed how the combination of thermal treatments and low-pH values of fruit juices leads to partial hydrolysis of inulin [96-98]. Therefore, given the low pH of both beverages (Table 1), it was essential to evaluate the stability of inulin after pasteurisation to ensure that the prebiotic fibre retained its potential functionality for this beverage to be classed as an FB. Given that even following pasteurisation, there was no change in the inulin content, this shows that inulin can be added to such FBs to increase the fibre content in the product.

In terms of antioxidant properties, RAB outperformed SSB, exhibiting a significantly greater DPPH radical scavenging capacity and higher FRAP activity. This enhanced antioxidant profile may be attributed to the higher percentage of fruit extracts added in the RAB, which helps compensate for the sugar volume in SSB. A comparative study comparing commercial FBs displayed that total polyphenols ranged from 27 and 398 mg GAE/100 mL, with only four

beverages of 18 having higher quantities of TPC than the FBs developed in this study [31]. This demonstrates the suitability of these ingredients in creating a beverage rich in polyphenolic compounds which remain thermally stable.

Pasteurisation significantly improved the DPPH radical scavenging ability of both the SSB and RAB (p<0.01). Similarly, a previous study displayed that pasteurisation did not significantly increase TPC of pomegranate juice but had significant changes on the DPPH values [99]. This could be related to the inhibition of the polyphenol oxidase enzyme in juice, promoting the release of phenolic compounds from the plant cells into the juice which contribute to antioxidant activity [100]. The RAB had significantly better DPPH results than the SSB (p-value<0.05), and similar findings were observed in guava nectar sweetened with stevia compared to sugar [101].

There was a significant increase in FRAP values after pasteurisation in the RAB (p-value <0.05) but not in the SSB. Thus, the effect of thermal processing in releasing antioxidant compounds might be hindered by a higher quantity of sugar. The addition of sugar to green tea previously displayed significant decreases in its antioxidant activity, potentially due to the formation of glucose-gallic complexes [102,103]. However, the addition of stevia to tea displayed no significant effect on the antioxidant activity, accentuating its advantages as a sweetener [103]. Due to the high content of GT in this FB, the formation of these complexes could potentially explain why the RAB has significantly better DPPH scavenging and FRAP compared to the SSB.

Although the RAB has a trend of higher TAC values, there is no significant differences between the beverages (p-value>0.05). This finding contradicts the literature as several studies have reported significant losses in TAC following pasteurisation [104-106]. Anthocyanins colour changes to yellow or colourless due to temperature susceptibility [107,108]. The RAB had a significant

increase in yellowness following pasteurisation, and this change in compounds could be related to the slight degradation of anthocyanin breakdown. A chromatographic analysis of the components responsible for the antioxidant activities would prove useful in the future to assess how pasteurisation might have led to changes in the structures of the compounds and affected the antioxidant activity of both beverages.

Colour differences between the two beverages were also observed, with RAB initially being darker and less yellow than SSB. Pasteurisation led to a slight increase in yellowness in RAB, but these changes were not visually perceptible, and both beverages retained an appealing pink colour. There is ed literature evaluating how Reb-A influences colour stability compared to sugar during pasteurisation, potentially being involved in interactions with other components in the juices and anthocyanin stability which require further studying. A desirable pink colour was achieved in the product development, aligning with both social media and consumer demands for more striking colours, and visually appealing food products [109-111]. Similar findings were reported by [112], where pasteurisation at 80-99°C increased L* values in a stevia-sweetened exotic fruit beverage and the b* values increased with thermal treatment independent of stevia glycosides addition. These results were attributed to the partial precipitation of suspended unstable particles in the fruit juice, which could explain the observed results in this study [112].

Sensory analysis revealed a clear consumer preference for SSB, particularly among male participants, who are reported to favour sugary beverages over healthy options [86]. However, RAB still received high acceptability scores, especially among female participants, and was rated above 6 on a 9-point scale by most consumers. This positive reception of RAB contrasts with earlier reports of negative consumer responses to stevia-sweetened beverages, likely due to the formulation's use of lemon and inulin, which help mask

any potential bitterness or aftertaste associated with stevia [30,49,113].

A consumer-based panel is important for gaining consumer perspective and product acceptability; however, consumers lack knowledge on specific sensory attributes, and variability in scores is expected [114,115]. Trained assessors are recommended in new product development to accurately characterise the sensory properties of food, as they have an understanding of sensory attributes [115]. Although consumers offer valuable insights, the variability outlines the need for trained assessors to confirm the consumer's findings for a more comprehensive understanding of the product's sensory attributes and its potential market success.

Overall, replacing sugar with Reb-A in this beverage formulation resulted in a product with enhanced antioxidant potential and good consumer acceptability, particularly when combined with flavour-masking ingredients. While SSB remains the preferred choice for some consumers, RAB offers a promising, lower-calorie alternative that aligns with current trends toward healthier beverage options, without compromising on taste or functional benefits. Pasteurisation had only a minor impact on the comparative results, further supporting the suitability of both sweeteners in thermally processed functional beverages.

CONCLUSION

This study displayed the potential of using the natural sweetener Rebaudioside-A to produce a functional beverage, addressing the market demand for healthier alternatives free from artificial additives. Sensory analysis revealed a greater preference and acceptability for the sugar beverage; however, the Rebaudioside-A beverage received positive sensory scores, a good acceptability index, highlighting its market potential. This study highlighted men's preference for sweetness, as they significantly preferred the sugar beverage, whereas females showed no significant preference, therefore

indicating acceptance of the Rebaudioside-A beverage. Future *in vivo* trials would provide a comprehensive insight into whether the bioavailability of antioxidants demonstrates positive health effects to consumers. Overall, the development of an all-natural plant-based functional beverage using Rebaudioside-A displays potential for success within the Irish food market, providing consumers with a beverage rich in bioactive compounds and prebiotic fibres.

List of abbreviations: T2DM, Type 2 Diabetes Mellitus; CVDs, Cardiovascular Diseases:SSB, Sugar Sweetened Beverage; RAB, Reb-A Sweetened Beverage; Reb-A, Rebaudioside A; FB, Functional Beverage; ADI, Acceptable Daily Intake; TSS, Total Soluble Solids; FRAP, Ferric Reducing Antioxidant potential; AAE, Ascorbic Acid Equivalents; TPC, Total Polyphenolic content; GAE, Gallic Acid Equivalents; DPPH, 2,2-diphenyl-1-picrylhydrazyl; TAC, Total Monomeric Anthocyanin content; AI, Acceptability Index; ANOVA, analysis of variance; SD, Standard deviation; CV, Coefficient of Variation; RDI, Recommended Daily Intake.

Authors' contributions: FHS conceptualized the research topic and served as the lead scientist. LS and MW developed the beverage formulation and performed the physical, chemical, and sensory analyses and development of the manuscript. LS conducted the statistical analyses. FHS and DG provided detailed guidance and critical review of the manuscript, advised on the writing process, and contributed to the results discussions and manuscript preparation. All authors reviewed and approved the final version of the article.

Competing interests: The authors declare that they have no competing interests.

Acknowledgments and Funding: MIW thanks the financial support for the PhD scholarship provided by the University of Limerick, Science & Engineering Early Career

Scholarship, which was awarded by the University of Limerick to FAHS (leader) and DG.

The authors would like to thank Beneo, Belgium, for generously providing the Orafti HP® Inulin used in this study.

REFERENCES

- Shanmugasundaram S., Karmakar S. Excess dietary sugar and its impact on periodontal inflammation: A narrative review. BDJ Open. 2024;10(1):78.
 - DOI: https://doi.org/10.1038/s41405-024-00265-w
- Endy E.J., Yi S.-Y., Steffen B.T., Shikany J.M., Jacobs D.R., Jr., Goins R.K., Steffen L.M. Added sugar intake is associated with weight gain and risk of developing obesity over 30 years: The cardia study. Nutrition, Metabolism and Cardiovascular Diseases. 2024;34(2):466-474.
 - DOI: https://doi.org/10.1016/j.numecd.2023.10.022
- Zhang S., Xiao Y., Cheng Y., Ma Y., Liu J., Li C., Shang H. Associations of sugar intake, high-sugar dietary pattern, and the risk of dementia: A prospective cohort study of 210,832 participants. BMC Medicine. 2024;22(1):298.
 - DOI: https://doi.org/10.1186/s12916-024-03525-6
- Liu Y., Cheng J., Wan L., Chen W. Associations between total and added sugar intake and diabetes among chinese adults: The role of body mass index. Nutrients. 2023;15(14):3274. DOI: https://doi.org/10.3390/nu15143274
- Huang C., Liang Z., Ma J., Hu D., Yao F., Qin P. Total sugar, added sugar, fructose, and sucrose intake and all-cause, cardiovascular, and cancer mortality: A systematic review and dose-response meta-analysis of prospective cohort studies. Nutrition. 2023;111:112032.
 - DOI: https://doi.org/10.1016/j.nut.2023.112032
- Houghton F., Moran Stritch J., Nwanze L. An examination of ireland's sugar sweetened beverage tax (sugar tax) in practice. J Public Health (Oxf). 2023;45(3):e551-e556.
 - DOI: https://doi.org/10.1093/pubmed/fdad097
- Russell C., Baker P., Grimes C., Lindberg R., Lawrence M.A.
 Global trends in added sugars and non-nutritive sweetener
 use in the packaged food supply: Drivers and implications for
 public health. Public Health Nutr. 2023;26(5):952-964.
 - DOI: https://doi.org/10.1017/s1368980022001598
- Kossiva L., Kakleas K., Christodouli F., Soldatou A., Karanasios
 S., Karavanaki K. Chronic use of artificial sweeteners: Pros and cons. Nutrients. 2024;16(18):3162.

DOI: https://doi.org/10.3390/nu16183162

 Iqbal S., Malik Z.I., Farooq U., Abid J., Shah H.B.U., Ahmad A.M.R. Consumption of sugar sweetened beverages (ssbs) and breast cancer: A narrative review. Iran J Public Health. 2025;54(3):489-498.

DOI: https://doi.org/10.18502/ijph.v54i3.18242

 Mroczek K., Saletnik B., Bajcar M., Saletnik A., Puchalski C., Zaguła G. Effect on ionic composition and tonic parameters of sweeteners used in the production of functional beverages. Beverages. 2023;9(4):98.

DOI: https://doi.org/10.3390/beverages9040098

11. Shil A., Ladeira Faria L.M., Walker C.A., Chichger H. The artificial sweetener neotame negatively regulates the intestinal epithelium directly through t1r3-signaling and indirectly through pathogenic changes to model gut bacteria. Frontiers in Nutrition. 2024;112024.

DOI: https://doi.org/10.3389/fnut.2024.1366409

 Witkowski M., Nemet I., Alamri H., Wilcox J., Gupta N., Nimer N., Haghikia A., Li X.S., Wu Y., Saha P.P., Demuth I., König M., Steinhagen-Thiessen E., Cajka T., Fiehn O., Landmesser U., Tang W.H.W., Hazen S.L. The artificial sweetener erythritol and cardiovascular event risk. Nature Medicine. 2023;29(3):710-718.

DOI: https://doi.org/10.1038/s41591-023-02223-9

Griebsch L.V., Theiss E.L., Janitschke D., Erhardt V.K., Erhardt
T., Haas E.C., Kuppler K.N., Radermacher J., Walzer O., Lauer
A.A., Matschke V., Hartmann T., Grimm M.O., Grimm H.S.
Aspartame and its metabolites cause oxidative stress and
mitochondrial and lipid alterations in sh-sy5y cells.
Nutrients. 2023;15(6):1467.

DOI: https://doi.org/10.3390/nu15061467

 Xie J., Zhu Y., Yang Z., Yu Z., Yang M., Wang Q. An integrative analysis reveals cancer risk associated with artificial sweeteners. Journal of Translational Medicine. 2025;23(1):32.

DOI: <u>https://doi.org/10.1186/s12967-024-06047-0</u>

 Yargatti R., Deshmane A. Sensory impacts and consumer acceptability of using dates as analternative functional sweetener in traditional indian sweets. Functional Food Science - Online ISSN: 2767-3146. 2025;5(2):30-45.

DOI: https://doi.org/10.31989/ffs.v5i2.1522

 Llalla Vidal T.M., Macnab G., Mitchell S., Flavel M. Sugar cane extracts as natural taste modulators: Potential for sugar reduction in beverages and beyond. Frontiers in Nutrition. 2025;12. DOI: https://doi.org/10.3389/fnut.2025.1603101 Leśniewicz A., Wełna M., Szymczycha-Madeja A., Pohl P. The identity and mineral composition of natural, plant-derived and artificial sweeteners. Molecules. 2023;28(18).

DOI: https://doi.org/10.3390/molecules28186618

 Gupta A., Sanwal N., Bareen M.A., Barua S., Sharma N., Joshua Olatunji O., Prakash Nirmal N., Sahu J.K. Trends in functional beverages: Functional ingredients, processing technologies, stability, health benefits, and consumer perspective. Food Research International. 2023;170:113046.

DOI: https://doi.org/10.1016/j.foodres.2023.113046

- Patra M., Bashir O., Amin T., Wani A.W., Shams R., Chaudhary K.S., Mirza A.A., Manzoor S. A comprehensive review on functional beverages from cereal grainscharacterization of nutraceutical potential, processing technologies and product types. Heliyon. 2023;9(6):e16804.
 DOI: https://doi.org/10.1016/j.heliyon.2023.e16804
- Ferdous J., Bhuia M.S., Chowdhury R., Sheikh S., Islam M.T.
 Therapeutic effects of natural food additives steviol glycosides from stevia rebaudiana: A comprehensive review with mechanisms. Journal of Food Biochemistry. 2025;2025(1):7772203.

DOI: https://doi.org/10.1155/jfbc/7772203

 Wang Y., Luo X., Chen L., Mustapha A.T., Yu X., Zhou C., Okonkwo C.E. Natural and low-caloric rebaudioside a as a substitute for dietary sugars: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety. 2023;22(1):615-642.

DOI: https://doi.org/10.1111/1541-4337.13084

 Additives E.P.o.F., Nutrient Sources added to F. Scientific opinion on the safety of steviol glycosides for the proposed uses as a food additive. EFSA Journal. 2010;8(4):1537.

DOI: https://doi.org/10.2903/j.efsa.2010.1537

23. EFSA. Safety of a proposed amendment of the specifications for steviol glycosides (e 960) as a food additive: To expand the list of steviol glycosides to all those identified in the leaves of stevia rebaudiana bertoni. EFSA Journal. 2020;18(4):e06106.

DOI: https://doi.org/10.2903/j.efsa.2020.6106

24. Bracchi I., Morais J., Coelho J.A., Ferreira A.F., Alves I., Mendes C., Correia B., Gonçalves A., Guimarães J.T., Falcão-Pires I., Keating E., Negrão R. The cardiometabolic impact of rebaudioside a exposure during the reproductive stage. Biology. 2024;13(3):163.

DOI: https://doi.org/10.3390/biology13030163

 Orellana-Paucar A.M. Steviol glycosides from stevia rebaudiana: An updated overview of their sweetening activity, pharmacological properties, and safety aspects. Molecules. 2023;28(3).

DOI: https://doi.org/10.3390/molecules28031258

- Kim Y., Han H., Oh Y., Shin H., Park G., Park S., Manthey J.A., Kim Y., Kim Y. A combination of rebaudioside a and neohesperidin dihydrochalcone suppressed weight gain by regulating visceral fat and hepatic lipid metabolism in ob/ob mice. Food Science and Biotechnology. 2024;33(4):913-923.
 DOI: https://doi.org/10.1007/s10068-023-01391-1
- Papaefthimiou M., Kontou P.I., Bagos P.G., Braliou G.G.
 Antioxidant activity of leaf extracts from stevia rebaudiana bertoni exerts attenuating effect on diseased experimental rats: A systematic review and meta-analysis. Nutrients. 2023;15(15):3325.

DOI: https://doi.org/10.3390/nu15153325

28. Wang Y., Lin L. Naturally occurring and artificial nonnutritive sweeteners: Potential impacts on metabolic diseases. eFood. 2025;6(1):e70028.

DOI: https://doi.org/10.1002/efd2.70028

29. Moazzem M.S., Williams R., Hayden M., D'Souza N., Cho S. Taste profiles of steviol glycoside blends and their application in ice cream. International Journal of Gastronomy and Food Science. 2025;40:101143.

DOI: https://doi.org/10.1016/j.ijgfs.2025.101143

 Schiatti-Sisó I.P., Quintana S.E., García-Zapateiro L.A. Stevia (stevia rebaudiana) as a common sugar substitute and its application in food matrices: An updated review. Journal of Food Science and Technology. 2023;60(5):1483-1492.

DOI: https://doi.org/10.1007/s13197-022-05396-2

De La Fuente-Carmelino L., Anticona M., Ramos-Escudero F.,
 Casimiro-Gonzales S., Muñoz A.M. Commercial plant-based functional beverages: A comparative study of nutritional composition and bioactive compounds. Beverages. 2025;11(1).

DOI: https://doi.org/10.3390/beverages11010026

Global functional beverages market report and strategies,.
 The Business Research Company Accessed 03-07-2024,
 2024.

https://www.thebusinessresearchcompany.com/report/functional-beverages-market

Carvalho F., Lahlou R.A., Pires P., Salgado M., Silva L.R.
 Natural functional beverages as an approach to manage
 diabetes. International Journal of Molecular Sciences.
 2023;24(23). DOI: https://doi.org/10.3390/ijms242316977

 Panou A., Karabagias I.K. Composition, properties, and beneficial effects of functional beverages on human health. Beverages. 2025;11(2).

DOI: https://doi.org/10.3390/beverages11020040

 Ontawong A., Pengnet S., Thim-Uam A., Munkong N., Narkprasom N., Narkprasom K., Kuntakhut K., Kamkeaw N., Amornlerdpison D. A randomized controlled clinical trial examining the effects of cordyceps militaris beverage on the immune response in healthy adults. Scientific Reports. 2024;14(1):7994.

DOI: https://doi.org/10.1038/s41598-024-58742-z

Scarcelli E., Iacopetta D., Ceramella J., Bonofiglio D., Conforti
F.L., Aiello F., Sinicropi M.S. The role of functional beverages
in mitigating cardiovascular disease risk factors: A focus on
their antidiabetic and hypolipidemic properties. Beverages.
2025;11(1):21.

DOI: https://doi.org/10.3390/beverages11010021

 Abitayeva G., Bissenova G., Mussabayeva B., Naimanov Y., Tultabayeva T., Sarmurzina Z. Development, quality and safety evaluation of a probiotic whey beverage. Functional Foods in Health and Disease. 2023;13(7).

DOI: https://doi.org/10.31989/ffhd.v13i7.1121

38. Kaur R., Shekhar S., Prasad K. Functional beverages: Recent trends and prospects as potential meal replacers. Food Materials Research. 2024;4(1).

DOI: https://doi.org/10.48130/fmr-0023-0041

- Moradnia M., Mohammadkhani N., Azizi B., Mohammadi M., Ebrahimpour S., Tabatabaei-Malazy O., Mirsadeghi S., Ale-Ebrahim M. The power of punica granatum: A natural remedy for oxidative stress and inflammation; a narrative review. Journal of Ethnopharmacology. 2024;330:118243.
 DOI: https://doi.org/10.1016/j.jep.2024.118243
- Cheng W., Liang K., Huang A. An updated systematic review and meta-analysis of pomegranate consumption on lipid profile. Prostaglandins & Other Lipid Mediators. 2025;178:106992.

DOI: https://doi.org/10.1016/j.prostaglandins.2025.106992

Saeed E., Javed F., Rana Z., Perveen R., Mallhi I.Y., Amjad I.,
Maqsood Q., Chaudhary N.A., Tahir S.B., Fatima A., Rasheed
N.F., Alum E.U. Bioactive compounds, their mechanisms of
action, and cardioprotective effects of pomegranate (punica
granatum): A comprehensive review. eFood.
2025;6(4):e70075.

DOI: https://doi.org/10.1002/efd2.70075

- Bahari H., Rafiei H., Goudarzi K., Omidian K., Asbaghi O., Kolbadi K.S.H., Naderian M., Hosseini A. The effects of pomegranate consumption on inflammatory and oxidative stress biomarkers in adults: A systematic review and metaanalysis. Inflammopharmacology. 2023;31(5):2283-2301.
 DOI: https://doi.org/10.1007/s10787-023-01294-x
- 43. Lippi N., Senger E., Karhu S., Mezzetti B., Cianciabella M., Denoyes B., Sönmez D.A., Fidelis M., Gatti E., Höfer M., Kafkas N.E., Mazzoni L., McCallum S., Olbricht K., Orsucci S., Osorio S., Pinczinger D., Predieri S., Rokka S., Sánchez-Sevilla J.F., Savini G., Soria C., Usadel B., Zucchi P., Chiara M. Development and validation of a multilingual lexicon as a key tool for the sensory analyses and consumer tests of blueberry and raspberry fruit. Agriculture. 2023;13(2).

DOI: https://doi.org/10.3390/agriculture13020314

 Chwil M., Matraszek-Gawron R., Kostryco M., Różańska-Boczula M. Nutritionally important pro-health active ingredients and antioxidant properties of fruits and fruit juice of selected biennial fruiting rubus idaeus I. Cultivars. Pharmaceuticals (Basel). 2023;16(12).

DOI: https://doi.org/10.3390/ph16121698

- 45. HSE. Vitamin c guidelines. Health Services Executive Ireland.

 2024. https://www2.hse.ie/conditions/vitamins-and-minerals/vitamin-c/#:~:text=How%20much%20vitamin%20C%20you,in%20your%20diet%20every%20day.
- 46. Dhuique-Mayer C., Servent A. An overview of the nutritional quality and health benefits linked to the world diversity of citrus fruits/juices. Journal of Food Science. 2025;90(1):e17576.

DOI: https://doi.org/10.1111/1750-3841.17576

47. Šošić-Jurjević B., Borković-Mitić S., Pavlović S., Vlahović D., Miler M., Cesar T., Ajdžanović V., Milenkovic D., Stellaard F., Trifunović S., Filipović B., Lütjohann D. Lemon flavonoid extract eriomin improves pro/antioxidant status and interferes with cholesterol metabolism without affecting serum cholesterol levels in aged rats. International Journal of Molecular Sciences. 2024;25(10).

DOI: https://doi.org/10.3390/ijms25105221

 González-Molina E., Moreno D.A., García-Viguera C. A new drink rich in healthy bioactives combining lemon and pomegranate juices. Food Chemistry. 2009;115(4):1364-1372.

DOI: https://doi.org/10.1016/j.foodchem.2009.01.056

- 49. Mielby L.H., Andersen B.V., Jensen S., Kildegaard H., Kuznetsova A., Eggers N., Brockhoff P.B., Byrne D.V. Changes in sensory characteristics and their relation with consumers' liking, wanting and sensory satisfaction: Using dietary fibre and lime flavour in stevia rebaudiana sweetened fruit beverages. Food Research International. 2016;82:14-21. DOI: https://doi.org/10.1016/j.foodres.2016.01.010
- Mu Z., Tran B.-M., Xu H., Yang Z., Qamar U.Z., Wang X., Xiao
 Y., Luo J. Exploring the potential application of coconut
 water in healthcare and biotechnology: A review. Beverage
 Plant Research. 2024;4(1).

DOI: https://doi.org/10.48130/bpr-0024-0009

 Coulibaly W.H., Camara F., Tohoyessou M.G., Konan P.A.K., Coulibaly K., Yapo E.G.A.S., Wiafe M.A. Nutritional profile and functional properties of coconut water marketed in the streets of abidjan (côte d'ivoire). Scientific African. 2023;20:e01616.

DOI: https://doi.org/10.1016/j.sciaf.2023.e01616

O'Brien B.J., Bell L.R., Hennessy D., Denham J., Paton C.D.
 Coconut water: A sports drink alternative? Sports.
 2023;11(9):183.

DOI: https://doi.org/10.3390/sports11090183

53. Quan J., Zhang T., Gu Y., Meng G., Zhang Q., Liu L., Wu H., Zhang S., Wang X., Zhang J., Sun S., Wang X., Zhou M., Jia Q., Song K., Niu K. Green tea intake and the risk of hypertension in premenopausal women: The tclsih cohort study. Food & Function. 2023;14(9):4406-4413.

DOI: https://doi.org/10.1039/D2F003342A

54. Nhu-Trang T.-T., Nguyen Q.-D., Cong-Hau N., Anh-Dao L.-T., Behra P. Characteristics and relationships between total polyphenol and flavonoid contents, antioxidant capacities, and the content of caffeine, gallic acid, and major catechins in wild/ancient and cultivated teas in vietnam. Molecules. 2023;28(8).

DOI: https://doi.org/10.3390/molecules28083470

55. Yang H., Cao J., Li J.-M., Li C., Zhou W.-W., Luo J.-W. Exploration of the molecular mechanism of tea polyphenols against pulmonary hypertension by integrative approach of network pharmacology, molecular docking, and experimental verification. Molecular Diversity. 2024;28(4):2603-2616.

DOI: https://doi.org/10.1007/s11030-023-10700-z

Liu B., Gu S., Zhang J., Zhou H., Su J., Wang S., Sun Q., Zhou Z., Zhou J., Dong C. Green tea consumption and incidence of cardiovascular disease in type 2 diabetic patients with overweight/obesity: A community-based cohort study. Archives of Public Health. 2024;82(1):18.

DOI: https://doi.org/10.1186/s13690-024-01242-3

57. Saleem M., Ullah M., Kamreen H., Hajri A.K., Alanazi A.N., Alraih A.M., Alsuhaibani A.M., Albedair L.A., ur Rehman K., Khan D. Microwave-assisted extraction of green tea catechins and antioxidant activity of tea extracts: The role of solvents, microwave power, and contact time. Microchemical Journal. 2024;203:110906.

DOI: https://doi.org/10.1016/j.microc.2024.110906

58. Santos R.A., Pessoa H.R., Daleprane J.B., de Faria Lopes G.P., da Costa D.C.F. Comparative anticancer potential of green tea extract and epigallocatechin-3-gallate on breast cancer spheroids. Foods. 2024;13(1).

DOI: https://doi.org/10.3390/foods13010064

 Choi C., Han J., Son Y., Joo S., Kwon S., Lee Y.-H. Green tea extract exhibits antidiabetic effects partly through regulating dipeptidyl peptidase-4 expression in adipose tissue. The Journal of Nutritional Biochemistry. 2023;111:109173.

DOI: https://doi.org/10.1016/j.jnutbio.2022.109173

 Jia M.J., Liu X.N., Liang Y.C., Liu D.L., Li H.L. The effect of green tea on patients with type 2 diabetes mellitus: A metaanalysis. Medicine (Baltimore). 2024;103(47):e39702.

DOI: https://doi.org/10.1097/md.000000000039702

Valverde-Salazar V., Ruiz-Gabarre D., García-Escudero V.
 Alzheimer's disease and green tea: Epigallocatechin-3-gallate as a modulator of inflammation and oxidative stress.
 Antioxidants. 2023;12(7).

DOI: https://doi.org/10.3390/antiox12071460

62. Chkhikvishvili I., Revishvili T., Gogia N., Esiashvili M., Chkhikvishvili D., Whited S., Martirosyan D., Dolidze B. Impact of fixation method on catechin profile and antioxidant activity of georgian green tea. Bioactive Compounds in Health and Disease - Online ISSN: 2574-0334; Print ISSN: 2769-2426. 2025;8(7):257-268.

DOI: https://doi.org/10.31989/bchd.v8i7.1659

63. Khanpit V.V., Tajane S.P., Mandavgane S.A. Dietary fibers from fruit and vegetable waste: Methods of extraction and processes of value addition. Biomass Conversion and Biorefinery. 2025;15(2):1667-1686.

DOI: https://doi.org/10.1007/s13399-021-01980-2

64. Salazar-Bermeo J., Moreno-Chamba B., Heredia-Hortigüela R., Lizama V., Martínez-Madrid M.C., Saura D., Valero M., Neacsu M., Martí N. Green technologies for persimmon by-products revalorisation as sustainable sources of dietary fibre and antioxidants for functional beverages development. Antioxidants. 2023;12(5).

DOI: https://doi.org/10.3390/antiox12051085

65. Klinken B.J.-W., D'Adamo C., Pauli E., Kalgaonkar S. An upcycled dietary fiber rich in bioactives from hemp hulls supports digestive comfort in healthy adults: Randomized, placebo-controlled trial. Bioactive Compounds in Health and Disease - Online ISSN: 2574-0334; Print ISSN: 2769-2426. 2024;7(12):594-608.

DOI: https://doi.org/10.31989/bchd.v7i12.1505

66. Lynch E., Mulligan S., Doyle S.L. An exploration of fibre intake and bowel function in a sample of adults at an irish university campus. Irish Journal of Medical Science (1971 -). 2024;193(6):2753-2760.

DOI: https://doi.org/10.1007/s11845-024-03764-9

- Celiberto F., Aloisio A., Girardi B., Pricci M., Iannone A., Russo F., Riezzo G., D'Attoma B., Ierardi E., Losurdo G., Di Leo A. Fibres and colorectal cancer: Clinical and molecular evidence. International Journal of Molecular Sciences. 2023;24(17). DOI: https://doi.org/10.3390/ijms241713501
- Kumari A., K. G R., Sudhakaran. V A., Warrier A.S., Singh N.K.
 Unveiling the health benefits of prebiotics: A comprehensive review. Indian Journal of Microbiology. 2024;64(2):376-388.

 DOI: https://doi.org/10.1007/s12088-024-01235-4
- 69. Qin Y.-Q., Wang L.-Y., Yang X.-Y., Xu Y.-J., Fan G., Fan Y.-G., Ren J.-N., An Q., Li X. Inulin: Properties and health benefits. Food & Function. 2023;14(7):2948-2968.

DOI: https://doi.org/10.1039/D2F001096H

 Farrell M., Lima A.d.S., Mohammadi N., Cruz T.M., Zhou F., Xu Y.-Q., Zhang L., Granato D. Microencapsulation of purple tea polyphenols using the vibrating nozzle ionotropic gelation technology: Metabolomics, bioactivity, and application in milky tea. LWT. 2024;199:116099.

DOI: https://doi.org/10.1016/j.lwt.2024.116099

 Pielak M., Czarniecka-Skubina E., Głuchowski A. Effect of sugar substitution with steviol glycosides on sensory quality and physicochemical composition of low-sugar apple preserves. Foods. 2020;9(3).

DOI: https://doi.org/10.3390/foods9030293

- Konica-Minolta. Identifying color differences using I*a*b* or
 I*c*h* coordinates. Konica Minolta 2024.
 https://sensing.konicaminolta.us/us/blog/identifying-color-differences-using-l-a-b-or-l-c-h-coordinates/
- 73. Benzie I.F.F., Strain J.J. The ferric reducing ability of plasma (frap) as a measure of "antioxidant power": The frap assay. Analytical Biochemistry. 1996;239(1):70-76.

DOI: https://doi.org/10.1006/abio.1996.0292

Margraf T., Karnopp A.R., Rosso N.D., Granato D.
 Comparison between folin-ciocalteu and prussian blue assays to estimate the total phenolic content of juices and teas using 96-well microplates. J Food Sci. 2015;80(11):C2397-403.

DOI: https://doi.org/10.1111/1750-3841.13077

- Singleton V.L., Orthofer R., Lamuela-Raventós R.M. [14] analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in enzymology. Academic Press; 1999:152-178.
- Brand-Williams W., Cuvelier M.E., Berset C. Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology. 1995;28(1):25-30.

DOI: https://doi.org/10.1016/S0023-6438(95)80008-5

- Wrolstad R.E. Color and pigment analyses in fruit products.
 1993
- Kardas M., Rakuła M., Kołodziejczyk A., Staśkiewicz-Bartecka W. Consumer preferences, sensory evaluation, and color analysis of beetroot and tomato juices: Implications for product development and marketing in health-promoting beverages. Foods. 2024;13(24).

DOI: https://doi.org/10.3390/foods13244059

 Ahern N., Arendt E.K., Sahin A.W. Protein soft drinks: A retail market analysis and selected product characterization. Beverages. 2023;9(3).

DOI: https://doi.org/10.3390/beverages9030073

 Baldassi C., Lee C., Dossett M., Castellarin S.D. Highthroughput color determination of red raspberry puree and correlation of color parameters with total anthocyanins. Plant Methods. 2024;20(1):78.

DOI: https://doi.org/10.1186/s13007-024-01197-0

 Ajay S., Panicker J.S., Krishnan R.R., Prema K.H. Greener extraction of anthocyanin pigment from syzygium samarangenese and flacourtia jangomas: An alternative to synthetic ph indicators. Waste and Biomass Valorization. 2024;15(2):1175-1184.

DOI: https://doi.org/10.1007/s12649-023-02245-x

- 82. Türkyılmaz M., Hamzaoğlu F., Çiftci R.B.A., Özkan M. Increase in colour stability of pomegranate juice against 5-hydroxymethylfurfural (hmf) through copigmentation with phenolic acids. Journal of the Science of Food and Agriculture. 2023;103(15):7836-7848.
 - DOI: https://doi.org/10.1002/jsfa.12866
- Huey S.L., Bhargava A., Friesen V.M., Konieczynski E.M., Krisher J.T., Mbuya M.N.N., Mehta N.H., Monterrosa E., Nyangaresi A.M., Mehta S. Sensory acceptability of biofortified foods and food products: A systematic review. Nutrition Reviews. 2024;82(7):892-912.

DOI: https://doi.org/10.1093/nutrit/nuad100

84. Drake M.A., Watson M.E., Liu Y. Sensory analysis and consumer preference: Best practices. Annual Review of Food Science and Technology. 2023;14:427-448.

DOI: https://doi.org/10.1146/annurev-food-060721-023619

- Lawless H.T., Heymann H. Sensory evaluation of food: Principles and practices. Springer Science & Business Media; 2010.
- Feraco A., Armani A., Amoah I., Guseva E., Camajani E., Gorini S., Strollo R., Padua E., Caprio M., Lombardo M. Assessing gender differences in food preferences and physical activity: A population-based survey. Frontiers in Nutrition. 2024;11.

DOI: https://doi.org/10.3389/fnut.2024.1348456

87. Muhammad A.I., Rilwan A., Nouruddeen Z.B., Ejiohuo O., Al-Habsi N. Enhancing the sensory quality, stability, and shelf life of baobab fruit pulp drinks: The role of hydrocolloids. Polymers. 2025;17(10):1396.

DOI: https://doi.org/10.3390/polym17101396

 Qin Y., Luo Y., Qiu S., Zhang Q., Yang L. Secondary metabolite profiles and bioactivities of red raspberry juice during fermentation with wickerhamomyces anomalus. LWT. 2024;191:115706.

DOI: https://doi.org/10.1016/j.lwt.2023.115706

 Rababah T., Al-U'datt M., Gammoh S., Khatatbeh T.a., Magableh G., Almajwal A., Yücel S., AL-Rayyan N. Study of the physiochemical and nutraceutical properties of sour and sweet pomegranate juice in northern jordan. Journal of Food Quality. 2023;2023(1):5426321.

DOI: https://doi.org/10.1155/2023/5426321

Narjesi V., Bonyanpour A., Ghasemi-Soloklui A.A.
 Determining the optimal harvest time for pomegranate variety wonderful in semi-arid climate. Scientific Reports. 2025;15(1):7668.

DOI: https://doi.org/10.1038/s41598-025-92015-7

 Mohammadian N., Ziaiifar A.M., Mirzaee-Ghaleh E., Kashaninejad M., Karami H. Gas sensor technology and ai: Forecasting lemon juice quality dynamics during the storage period. Journal of Stored Products Research. 2024;109:102449.

DOI: https://doi.org/10.1016/j.jspr.2024.102449

 Wang L., Dekker M., Heising J., Zhao L., Fogliano V. Food matrix design can influence the antimicrobial activity in the food systems: A narrative review. Critical Reviews in Food Science and Nutrition. 2024;64(25):8963-8989.

DOI: https://doi.org/10.1080/10408398.2023.2205937

 Sun S., Xie Y., Yang R., Zhu M.-J., Sablani S., Tang J. The influence of temperature and water activity on thermal resistance of salmonella in milk chocolate. Food Control. 2023;143:109292.

DOI: https://doi.org/10.1016/j.foodcont.2022.109292

 Maneffa A.J., Stenner R., Matharu A.S., Clark J.H., Matubayasi N., Shimizu S. Water activity in liquid food systems: A molecular scale interpretation. Food Chem. 2017;237:1133-1138.

DOI: https://doi.org/10.1016/j.foodchem.2017.06.046

95. Kheto A., Bist Y., Awana A., Kaur S., Kumar Y., Sehrawat R. Utilization of inulin as a functional ingredient in food: Processing, physicochemical characteristics, food applications, and future research directions. Food Chemistry Advances. 2023;3:100443.

DOI: https://doi.org/10.1016/j.focha.2023.100443

 Vega R., Zuniga-Hansen M.E. The effect of processing conditions on the stability of fructooligosaccharides in acidic food products. Food Chemistry. 2015;173:784-789.

DOI: https://doi.org/10.1016/j.foodchem.2014.10.119

 Silva E.K., Arruda H.S., Eberlin M.N., Pastore G.M., Meireles M.A.A. Effects of supercritical carbon dioxide and thermal treatment on the inulin chemical stability and functional properties of prebiotic-enriched apple juice. Food Research International. 2019;125:108561.

DOI: https://doi.org/10.1016/j.foodres.2019.108561

98. Arruda H.S., Silva E.K., Pastore G.M., Marostica Junior M.R. Non-thermal supercritical carbon dioxide processing retains the quality parameters and improves the kinetic stability of an araticum beverage enriched with inulin-type dietary fibers. Foods. 2023;12(13).

DOI: https://doi.org/10.3390/foods12132595

 Mena P., Vegara S., Martí N., García-Viguera C., Saura D., Valero M. Changes on indigenous microbiota, colour, bioactive compounds and antioxidant activity of pasteurised pomegranate juice. Food Chemistry. 2013;141(3):2122-2129.

DOI: https://doi.org/10.1016/j.foodchem.2013.04.118

100. Dereli U., Türkyilmaz M., Yemiş O., Özkan M. Effects of clarification and pasteurization on the phenolics, antioxidant capacity, color density and polymeric color of black carrot (aucus carota I.) juice. Journal of Food Biochemistry. 2015;39(5):528-537.

DOI: https://doi.org/10.1111/jfbc.12155

- 101. Peasura N., Sinchaipanit P. The impact of sweetener type on physicochemical properties, antioxidant activity and rheology of guava nectar during storage time. Beverages. 2022;8(2). DOI: https://doi.org/10.3390/beverages8020024
- 102. Shalaby E.A., I. M.G., and Shanab S.M.M. Suggested mechanism for the effect of sweeteners on radical scavenging activity of phenolic compounds in black and green tea. Frontiers in Life Science. 2016;9(4):241-251.

DOI: https://doi.org/10.1080/21553769.2016.1233909

103. Korir M.W., Wachira F.N., Wanyoko J.K., Ngure R.M., Khalid R. The fortification of tea with sweeteners and milk and its effect on in vitro antioxidant potential of tea product and glutathione levels in an animal model. Food Chemistry. 2014;145:145-153.

DOI: https://doi.org/10.1016/j.foodchem.2013.08.016

104. Vegara S., Mena P., Martí N., Saura D., Valero M. Approaches to understanding the contribution of anthocyanins to the antioxidant capacity of pasteurized pomegranate juices. Food Chemistry. 2013;141(3):1630-1636.

DOI: https://doi.org/10.1016/j.foodchem.2013.05.015

- 105. Shaheer C., Hafeeda P., Kumar R., Kathiravan T., Kumar D., Nadanasabapathi S. Effect of thermal and thermosonication on anthocyanin stability in jamun (eugenia jambolana) fruit juice. International Food Research Journal. 2014;21(6):2189. DOI: https://doi.org/10.5555/20153034353
- 106. Szalóki-Dorkó L., Végvári G., Ladányi M., Ficzek G., Stéger-Máté M. Degradation of anthocyanin content in sour cherry juice during heat treatment. Food Technol Biotechnol. 2015;53(3):354-360.

DOI: https://doi.org/10.17113/ftb.53.03.15.3931

107. Sendri N., Singh S., Bhatt S., Gupta M., Bhandari P. Insight into the influence of oxygen, sunlight and temperature on the stability and color attributes of red cabbage anthocyanins and in vitro gastrointestinal behaviour. Food Chemistry Advances. 2023;3:100359.

DOI: https://doi.org/10.1016/j.focha.2023.100359

108. Idir S., Achat S., Cruz L., Dangles O. Anthocyanin-rich extracts: Susceptibility to color loss by hydration and thermal degradation, influence of metal ions and endogenous copigments. Food Chemistry. 2025;481:144004.

DOI: https://doi.org/10.1016/j.foodchem.2025.144004

109. Riswanto A.L., Kim S., Williady A., Ha Y., Kim H.-S. How visual design in dairy packaging affects consumer attention and decision-making. Dairy. 2025;6(1).

DOI: https://doi.org/10.3390/dairy6010004

110. Spence C. On the manipulation, and meaning(s), of color in food: A historical perspective. Journal of Food Science. 2023;88(S1):A5-A20.

DOI: https://doi.org/10.1111/1750-3841.16439

- 111. Sharma M., Peng Y. How visual aesthetics and calorie density predict food image popularity on instagram: A computer vision analysis. Health Communication. 2024;39(3):577-591. DOI: https://doi.org/10.1080/10410236.2023.2175635
- 112. Buniowska M., Carbonell-Capella J.M., Znamirowska A., Zulueta A., Frígola A., Esteve M.J. Steviol glycosides and bioactive compounds of a beverage with exotic fruits and stevia rebaudiana bert. As affected by thermal treatment. International Journal of Food Properties. 2020;23(1):255-268. DOI: https://doi.org/10.1080/10942912.2020.1719134
- 113. Bolini H.M.A., Lima R.S., Freitas R.L.d., Medeiros A.C.d. Preference drivers for blackberry nectar (rubus spp., rosaceae) with different sweeteners. Foods. 2023;12(3):549. DOI: https://doi.org/10.3390/foods12030549
- 114. Moss R., LeBlanc J., Gorman M., Ritchie C., Duizer L., McSweeney M.B. A prospective review of the sensory properties of plant-based dairy and meat alternatives with a focus on texture. Foods. 2023;12(8):1709.

DOI: https://doi.org/10.3390/foods12081709

115. Rodrigues S.S.Q., Dias L.G., Teixeira A. Emerging methods for the evaluation of sensory quality of food: Technology at service. Current Food Science and Technology Reports. 2024;2(1):77-90.

DOI: https://doi.org/10.1007/s43555-024-00019-7