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ABSTRACT 

Lycopene is one of the key carotenoids in tomatoes (Lycopersicon esculentum Mill.). It is known for its strong antioxidant 

activity and its role in preventing cardiovascular diseases, cancer, and other chronic conditions. A complex interplay of 

genetic factors, agronomic practices, and environmental conditions determines its accumulation in tomato fruits. 

 Breeding for high-lycopene tomato varieties is actively advancing through traditional breeding methods and 

modern molecular markers, which facilitate the identification of promising genotypes and accelerate the breeding 

process. 

Beyond genetic traits, external factors significantly impact lycopene synthesis. Temperature regimes, solar radiation 

levels, photoperiod, and temperature fluctuations on the fruit surface can all influence its accumulation. Agronomic 

practices, such as growth regulators, organic amendments, and potassium fertilizers, also contribute to increased 

lycopene content. Potassium enhances carbon transport into the fruits, while organic fertilizers stimulate the enzymatic 

activity of the carotenoid biosynthesis pathway. Growth regulators can activate gene expression related to lycopene 

accumulation, offering opportunities for targeted control of its levels. 

This review uniquely integrates insights from molecular genetics, environmental factors, and agronomic strategies 

to comprehensively understand lycopene biosynthesis in tomatoes. Systematically connecting molecular mechanisms 

with practical cultivation approaches addresses a significant gap in the existing literature. 
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Additionally, the ripening stage and storage conditions further affect lycopene content. Thus, an integrated approach- 

combining molecular marker-assisted breeding, optimized agronomic techniques, and environmental factor 

management- can significantly enhance lycopene concentration in tomatoes, improving their nutritional value and 

functional properties. 

The findings presented offer actionable guidance for future breeding programs and cultivation practices to produce 

functionally enriched tomato varieties for the health-oriented food market. 

Keywords: lycopene, tomato, genetic factors, environmental factors, potassium fertilizers, organic fertilizers 
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INTRODUCTION 

In recent years, there has been a growing interest in 

studying bioactive compounds in agricultural crops, as 

they play a crucial role in determining their nutritional 

value and functional properties [1-2]. Research on these 

compounds' content and accumulation dynamics in 

various crops provides insight into mechanisms for 

enhancing their nutritional quality and cultivation 

efficiency [3-9]. 

Tomatoes (Lycopersicon esculentum Mill.) are a 

valuable source of essential nutrients, including vitamins 

(C, E, B), microelements, and antioxidants, among which 

carotenoids are particularly significant [10]. Lycopene, a 

red pigment, is the predominant carotenoid in tomato 

fruits, accounting for up to 98% of the total carotenoid 

content [11]. 

Lycopene was first isolated in 1910, and its 

molecular structure was determined in 1930. It belongs 
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to the polyene isoprenoid class of terpenes, specifically 

tetraterpenes. Structurally, lycopene is a tetraterpene 

composed of eight isoprene units, with a molecular 

formula containing 40 carbon atoms. Lycopene 

molecules exhibit symmetry and consist of two C20 

subunits with a hexagonal structure. A characteristic 

feature of lycopene is its geometric isomerism. It 

contains 13 double bonds and has an extended linear 

structure, distinguishing it from other carotenoids [12-

13]. The 2D molecular structure of lycopene is presented 

below (Figure 1): 

       Figure 1. The lycopene molecule [14] 

One of the critical stages in tomato cell metabolism 

is lycopene biosynthesis. Lycopene is a key carotenoid 

precursor for other carotenoids and significantly 

influences fruit pigmentation. Its biosynthesis proceeds 

through a series of desaturation and isomerization 

reactions, forming its characteristic structure with 

conjugated double bonds responsible for its red 

coloration and light absorption properties [15]. 

Within the plant pigment complex, lycopene and 

chlorophyll regulates photosynthesis by preventing 

singlet oxygen-induced damage to photosynthetic 

membranes. Its primary function is to protect cellular 

biomembranes from the harmful effects of solar 

radiation, ionizing radiation, and oxidative stress caused 

by free radicals [16]. 

In the human body, lycopene is a potent carotenoid 

antioxidant that reduces oxidative stress, lowers the risk 

of atherosclerosis, protects DNA, and prevents 

oncogenesis [17]. Its antioxidant activity significantly 

surpasses β-carotene and vitamin E, while remaining safe 

even at high doses. Exposure to high temperatures does 

not degrade lycopene; on the contrary, it enhances its 

bioavailability. The highest concentrations of lycopene 

are found in tomato paste (up to 1500 mg/kg), dried 

tomatoes (up to 460 mg/kg), and tomato sauce (up to 

135 mg/kg) [16, 18]. 

The unique ability of lycopene to effectively 

neutralize reactive oxygen species makes it a key 

component in the prevention of diseases associated with 

oxidative stress [19-21]. Despite lacking provitamin A 

activity, its effectiveness in scavenging singlet oxygen is 

nearly twice that of β-carotene [22-23]. Furthermore, 

lycopene exhibits pronounced anticancer properties 

through its antioxidant action, stimulation of detoxifying 

enzymes, activation of apoptosis, and inhibition of cell 

proliferation [24-27]. Studies have shown that lycopene 

possesses antioxidant and anti-inflammatory properties 

[28]. 

Considering the role of lycopene, its significance in 

the prevention of various diseases can be highlighted 

(Table 1). 
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Table 1. The Impact of Lycopene on the Prevention of Various Diseases. 

Prevention of diseases Description of the effects of lycopene References 

Prostate Cancer Lycopene helps reduce the risk of prostate cancer by inhibiting tumor growth, promoting 

apoptosis, and reducing oxidative stress 

[24-25, 29-33]  

Lung Cancer Lycopene lowers lung cancer risk through antioxidant effects, preventing DNA damage and 

reducing tumor cell proliferation. 

[32-33] 

Breast Cancer Lycopene inhibits breast cancer cell proliferation, induces apoptosis, and modulates 

estrogen receptor signaling. 

[34-35] 

Cardiovascular Diseases Lycopene reduces oxidative stress, lowers cholesterol, improves endothelial function, and 

prevents atherosclerosis. 

[17, 36-38] 

Neurodegenerative Diseases Lycopene protects neural cells from oxidative damage, reduces amyloid-beta 

accumulation, and supports brain health. 

[39-41] 

Inflammatory Processes Lycopene reduces inflammation by inhibiting cytokine production and inflammatory 

enzymes, preventing chronic diseases. 

[28, 42-44] 

Obesity  Lycopene aids in reducing fat accumulation, improving insulin sensitivity, and lowering 

inflammation linked to obesity. 

[28, 43, 45-46,] 

Diabetes Lycopene enhances insulin sensitivity, reduces oxidative stress, and improves glucose 

metabolism in diabetes. 

[28, 45, 47-48] 

Immunostimulatory Effects Lycopene boosts immune cell activity and enhances the body's defense against infections 

and diseases. 

[49-50] 

Cellular Aging (in vivo and in vitro) Lycopene slows cellular aging by reducing oxidative stress, promoting DNA repair, and 

improving cell viability. 

[51] 

Photodamage/Photoaging of Skin Lycopene protects skin from UV-induced damage, reducing wrinkles and improving 

elasticity and hydration. 

[52] 

Lycopene cannot be synthesized in the human body 

and is obtained solely through food. Lycopene 

consumption varies by country, which is attributed to 

differences in diet and the traditions of consuming 

tomatoes and tomato-based products (Table 2).

      Table 2. Average daily lycopene consumption in different countries 

Country Average daily lycopene consumption References 

USA 6.6-10.5 mg/day for men,  

5.7-10.4 mg/day for women 

[53] 

UK 1.1 mg/day [53] 

Spain 1.6 mg/day [53] 

Australia 3.8 mg/day [53] 

France 4.8 mg/day [53] 

Italy 7.4 mg/day [53] 

Netherlands 4.9 mg/day [53] 

Belgium 4.1 mg/day [54] 

South Korea 1.9 mg/day [55] 
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According to studies, the daily preventive dose of 

lycopene ranges from 6 to 15 mg daily, equivalent to 

approximately 2–3 servings of fresh tomatoes or one 

serving of tomato juice. The data presented highlights the 

role of knowledge on lycopene accumulation and the 

impact of various factors on its biosynthesis in developing 

diets and daily intake recommendations for individuals 

with health issues. 

Tomato varieties with high lycopene content have 

been developed in various parts of the world to meet 

growing nutritional and functional food demands. At the 

Scientific Centre of Vegetable and Industrial Crops in 

Armenia, several local high-lycopene varieties have also 

been developed, including “Lusarpi” F1, “Syune” F1, 

“Noy,” “Norq,” “Anahit 351” and others [56–58]. These 

varieties are actively used for fresh consumption and 

producing various tomato-based products, such as juices, 

sauces, pastes, and salads. Tomato processing 

enterprises supply the local market and exports, 

contributing to the country's development of the food 

industry. 

Optimizing lycopene content in fruits is key to 

improving their nutritional value and commercial appeal. 

The lycopene content in tomato fruits can vary 

significantly depending on numerous factors. Among 

these, the genetic predisposition of the variety, 

agronomic practices, various fertilizers, and 

environmental factors play a crucial role. A 

comprehensive study of these factors is essential for 

enhancing the biological value of tomatoes and their 

application in the food industry. 

Despite extensive research on lycopene 

biosynthesis and accumulation, the interplay between 

genetic factors, agronomic practices, and environmental 

conditions remains insufficiently explored in a holistic 

framework. This review integrates recent genetic and 

agronomic advancements to provide a more 

comprehensive understanding. This review article 

presents current data on the factors influencing lycopene 

content in tomatoes, focusing on genetic traits and 

breeding, agronomic practices, fertilizer application, and 

environmental conditions. The uniqueness of this 

approach lies in the interdisciplinary analysis, integrating 

data from genetics, agrochemistry, and ecology, which 

will enable a more in-depth understanding of the 

mechanisms regulating lycopene content in tomato 

fruits. 

Influence of Genetic Factors on Lycopene Levels in 

Tomatoes: 1.1. Lycopene Biosynthesis and Genetic 

Regulation: Lycopene biosynthesis begins with the 

formation of 15-cis-phytoene, the first colorless 

carotenoid, resulting from the condensation of two 

molecules of geranylgeranyl pyrophosphate (GGPP). This 

reaction is catalyzed by the enzyme phytoene synthase 

(PSY) [59]. PSY1 is exclusively expressed in fruits [60]. 

The subsequent conversion of phytoene to all-

trans-lycopene proceeds through desaturation and 

isomerization steps. In plants, desaturation is carried out 

by two key enzymes: phytoene desaturase (PDS) and ζ-

carotene desaturase (ZDS). Intermediate products such 

as Phytofluene, Neurosporene, and Prolycopene (Tetra-

cis-lycopene) undergo either light-dependent or 

enzymatic isomerization involving ζ-carotene isomerase 

(Z-ISO) and carotenoid cis-trans isomerase (CRTISO). 

These isomerization reactions are essential for forming 

biologically active all-trans-lycopene, which is required 

for downstream processes, including cyclization [59-60]. 

The number of conjugated double bonds increases 

throughout these steps, determining the pigment's 

coloration (Figure 2). 
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Figure 2. Scheme of all-trans-lycopene biosynthesis in plants 

At the molecular level, lycopene biosynthesis is 

regulated by a set of structural genes, including:  

PSY1 (Phytoene synthase 1) catalyzes the first and 

rate-limiting step in the carotenoid biosynthetic pathway 

by producing phytoene. The regulation of the PSY gene 

occurs at multiple levels — epigenetic, transcriptional, 

post-transcriptional, and post-translational — in 

response to various factors [61]. A mutant with a loss of 

PSY1 function produces yellow fruits due to the 

disruption of carotenoid biosynthesis [62]. 

PDS (Phytoene desaturase) catalyzes the removal of 

hydrogen atoms, forming the first double bonds in the 

molecule. When the PDS gene was silenced in tomato, 

the fruits exhibited a pale-yellow coloration, which was 

associated with reduced expression not only of PDS itself 

but also of other key genes in the carotenoid pathway: 

ZDS, CrtISO, and CrtR-b2. Additionally, the expression of 

ripening-related genes such as RIN, TAGL1, PE, LOX, 

FUL1/FUL2, and ethylene biosynthesis and response 

genes (ACO1, ACO3, E4, E8) also decreased [63]. 

The ZDS (ζ-carotene desaturase) gene encodes the 

enzyme ζ-carotene desaturase, which catalyzes the 

subsequent desaturation steps of ζ-carotene, first into 

neurosporene and then into prolycopene (tetra-cis-

lycopene). This is a key stage following the action of the 

PDS enzyme in the lycopene biosynthetic pathway. 

Disruptions in ZDS function lead to intermediate 

compounds such as ζ-carotene accumulation, 

highlighting its critical role in maintaining a proper 

carotenoid biosynthesis flow [64]. 

CRTISO (Carotenoid isomerase) – completes the 

process by converting prolycopene into all-trans-

lycopene. The loss of CRTISO gene function in tomato 

fruits leads to the accumulation of the cis-form of 

lycopene (prolycopene) instead of the normal trans-

lycopene, highlighting the important role of CRTISO in 

lycopene biosynthesis [65]. 
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Lycopene biosynthesis represents a complex, 

multistep pathway under tight biochemical and genetic 

control, and is highly responsive to environmental cues. 

Varietal characteristics of lycopene accumulation: The 

lycopene content in tomato fruits is determined by 

genetic characteristics and varies depending on the 

genotype [57, 66-67], ranging from 4.9 to 12.7 mg per 

100 g of fresh weight or from 3.5 to 6.9 mg per 100 g of 

fresh weight depending on measurement conditions 

[68]. It has been shown that pink-fruited varieties contain 

significantly higher levels of lycopene than red-fruited 

varieties [69]. In the study by Ayuso-Yuste et al. (2022), it 

was noted that the lycopene level increases as the fruit 

ripens in all traditional/local varieties, reaching 132.64 

mg/kg of raw mass. Moreover, traditional varieties 

contained more lycopene than commercial varieties 

during the last two stages of ripening [70]. Additionally, 

Kang (2022) emphasized the key role of the genotypic 

characteristics of tomato varieties in lycopene 

accumulation [71]. 

Breeding and Genetic Mutations: Traditional breeding of 

tomato varieties with high lycopene content presents a 

complex challenge due to the insufficient understanding 

of the molecular mechanisms regulating the 

accumulation of this carotenoid. With the development 

of molecular genetics and biotechnology, it has become 

possible to carry out such work in a more targeted 

manner. Several important genes in tomatoes have been 

mapped and cloned, and databases of sequenced whole-

genome sequences have been created, opening the 

possibility for developing convenient and straightforward 

molecular markers [72]. Genome editing technology 

allows for the targeted modification of key genes that 

affect fruit quality, which can be effectively applied in 

breeding programs. This is especially relevant for 

breeding traits manifest in later stages of vegetative 

development, such as lycopene content in mature fruits 

[73]. 

A network of genes that coordinate precursor 

formation and conversion tightly regulates lycopene 

biosynthesis in tomatoes. Among the critical enzymes 

involved are PSY, ZDS, and CrtISO, all regulated during 

fruit development [64]. Duduit (2022) analyzed 42 high-

lycopene tomato (HLY) varieties from different world 

regions to study these mechanisms. A comparative 

analysis using HPLC revealed that the lycopene level in 

HLY varieties significantly varied compared to control 

varieties, including the wild species Solanum 

pimpinellifolium, "Moneymaker," and NC 1Y. The 

expression of 25 genes involved in carotenoid 

biosynthesis was studied using real-time quantitative 

PCR. The results showed that genes such as GGPPS1, 

GGPPS2, GGPPS3, TPT1, SSU II, PSY2, ZDS, CrtISO, and 

CrtISO-L1 exhibited higher expression during the pink and 

red ripening stages in HLY varieties compared to control 

varieties. Meanwhile, genes responsible for the further 

conversion of lycopene (β-LCY2 and ε-LCY) demonstrated 

low activity, contributing to lycopene accumulation [74]. 

The characteristic red pigmentation of ripe fruits 

results from carotenoid synthesis, specifically lycopene 

and β-carotene, responsible for the color change of fruits 

from green to red. Lycopene synthesis in plants is 

regulated by several genes encoding key enzymes in 

biosynthetic pathways, such as lycopene-β- and 

lycopene-ε-cyclases, which play a central role in the 

conversion of lycopene into β- and α-carotenoids. 

Manipulating the expression of these genes, such as 

overexpression or suppression, is an effective method for 

increasing lycopene content in fruits. It is important to 

note that the genetic regulation of lycopene is also 

closely associated with plant adaptation to external 

conditions, such as stress factors [75]. 

Modern molecular breeding techniques, such as 

TILLING (Targeting Induced Local Lesions IN Genomes) 

and CRISPR/Cas9 (Clustered Regularly Interspaced Short 

Palindromic Repeats/CRISPR-associated proteins 9), offer 

new opportunities for creating tomato varieties with 
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improved lycopene content. These approaches can 

enhance fruit quality and increase plant resistance to 

various stresses. Li et al. (2018) used CRISPR/Cas9 for 

targeted editing of five genes involved in carotenoid 

metabolism. This enabled the simultaneous stimulation 

of lycopene biosynthesis and inhibition of its conversion 

into β- and α-carotene. Genetic modification, performed 

using Agrobacterium tumefaciens, resulted in a 5.1-fold 

increase in lycopene content in the fruits. The resulting 

homozygous mutations were stably inherited in 

subsequent generations [75]. In 2021, Japan became the 

first country to release a tomato created using CRISPR 

technology on the market [76]. 

Genetic modification, including CRISPR/Cas9 

technologies, offers new opportunities for precise gene 

editing related to the synthesis and degradation of 

carotenoids. For example, enhancing the expression of 

PSY or suppressing genes responsible for converting 

lycopene into other carotenoids can significantly increase 

the content of fruits [77]. 

Research conducted by Petrozza and colleagues 

(2023) demonstrated that modifying the enzyme 

lycopene-β-cyclase using the TILLING technology 

effectively increases lycopene levels in tomatoes. The 

novel allelic variant TILLING SlLCY-E has become a 

valuable genetic resource, capable of enriching fruits 

with lycopene and enhancing plant resistance to drought, 

which opens new prospects for developing varieties with 

improved traits [78]. 

The Del mutation, as shown in the studies by Ronen 

(1999), regulates lycopene accumulation in fruits by 

altering the expression of genes involved in carotenoid 

biosynthesis. During the fruit development phase, the 

mRNA levels of enzymes such as PSY and PDS, which 

participate in lycopene synthesis, increase, while the 

expression of genes responsible for converting lycopene 

into other carotenoids decreases. Specifically, the Del 

mutation in the tomato mutant Delta changes fruit color 

from red to orange due to the accumulation of beta-

carotene instead of lycopene. The CrtL-e gene, which 

encodes lycopene epsilon-cyclase, is located on 

chromosome 12 and converts lycopene into delta-

carotene. In plants with the Delta mutation, the 

transcript level of this gene increases 30 times during the 

ripening process [79]. 

Furthermore, mutations that slow down the 

degradation of lycopene, such as old-gold (og), old-gold 

crimson (og^c), and the chemically induced mutation 

A949G, are found in tomatoes with a determinate growth 

type, which limits the vegetative development of the 

plants. These tomatoes also carry a mutant allele in the 

SELF-PRUNING (SP) gene, which regulates plant growth 

[80]. Varieties containing the Crimson (og) gene had 

higher lycopene content (5086–5786 μg/100 g fresh 

weight) compared to varieties without this gene (2622–

4318 μg/100 g) [81]. However, modern tomato hybrids 

predominantly exhibit an indeterminate growth type. 

Since the SP and CYC-B genes, which influence lycopene 

levels, are in close genetic linkage, their separation using 

traditional breeding methods is challenging. This 

complicates the development of varieties with high 

lycopene content while maintaining an indeterminate 

growth type [82]. 

According to Romdhane et al. (2023), homozygosity 

for the hp-2dg gene in tomato varieties significantly 

increases the content of lycopene, β-carotene, phenols, 

flavonoids, and vitamin C. Such varieties exhibit 

improved functional properties, including high 

antioxidant activity, and maintain good agronomic 

characteristics even under organic cultivation conditions 

[83]. 

Particular attention should be given to transgenic 

tomatoes. For example, a null mutation in the lycopene 

β-cyclase 2 gene (LCY-B2) increases the lycopene content 

in fruits by 5%. It promotes the formation of dark red 

fruits, indicating high potential for developing tomatoes 

with improved characteristics [75, 79]. 
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The influence of environmental factors on lycopene 

content in tomatoes. 

Temperature: The biosynthesis of lycopene in tomatoes 

is sensitive to temperature fluctuations, as confirmed by 

several studies [84]. According to Dumas et al. (2003), 

temperatures below 12 °C significantly suppress 

lycopene biosynthesis, while temperatures above 32 °C 

completely halt the process [67]. One of the reasons for 

this is the deactivation of the enzyme phytoene synthase 

(PSY), a key component in the carotenoid biosynthesis 

pathway. PSY catalyzes the first committed step in the 

carotenoid pathway and is considered the primary rate-

limiting enzyme in carotenogenesis. Its activity is tightly 

regulated by various regulators and factors, allowing the 

plant to modulate carotenoid biosynthesis in response to 

both environmental and developmental signals. At high 

temperatures (>32 °C), PSY activity decreases sharply, 

leading to the cessation of lycopene synthesis [61]. The 

highest levels of lycopene are observed when moderate 

to high daytime temperatures (20–30°C) are combined 

with cool night conditions [67]. Research by Choi and 

Park (2023) demonstrated that tomatoes ripening at a 

daytime temperature of 30°C and a nighttime 

temperature of 20°C, along with a light intensity of 400 

μmol·m−2·s−1, contain the maximum amount of 

lycopene. These findings highlight the importance of 

controlling the temperature regime during the fruit 

ripening stage to achieve optimal product quality [85]. 

In general, field-grown tomatoes contain more 

lycopene than greenhouse-grown ones. A study by Ilić 

(2014) involving 39 tomato genotypes showed that the 

lycopene content in greenhouse varieties ranged from 

0.6 to 6.4 mg/100 g, while in field-grown tomatoes, it 

reached 11.7 mg/100 g [86]. However, data from Joseph 

O. Kuti (2005) demonstrate that cluster and round

tomatoes grown in greenhouses contained more 

lycopene (30.3 mg/kg) compared to field-grown ones 

(25.2 mg/kg). In contrast, cherry tomatoes exhibited the 

opposite trend (91.9 mg/kg in the field vs. 56.1 mg/kg in 

greenhouses). This confirms that lycopene content is 

influenced not only by growing conditions but also by the 

genetic characteristics of the varieties [87]. 

While temperature directly affects enzyme activity 

in lycopene biosynthesis, light intensity and photo period 

further influence pigment accumulation by modulating 

chloroplast metabolism. 

Solar Radiation, Photoperiod, and Fruit Surface 

Temperature: Light positively affects lycopene synthesis 

in tomatoes, with the key factor being the intensity of 

solar radiation. A study by Jarquín-Enríquez (2013) 

showed that increasing the photoperiod promotes an 

increase in lycopene content, especially under high light 

intensity, when the fruit color index (a*/b*) reaches 1.22 

[88]. Moreover, light exposure, especially in the red/far-

red spectrum, upregulates the expression of the 

Carotenoid isomerase (CrtISO) gene, which plays a crucial 

role in lycopene biosynthesis [64]. Light can also restore 

lycopene synthesis when Z-ISO (ζ-carotene isomerase) is 

suppressed [64]. However, it is essential to note that 

excessive solar radiation may negatively affect the 

lycopene content in the fruit [67]. 

In the research by Helyes et al. (2003), a significant 

difference was found in lycopene content between 

tomatoes grown in open field conditions (49.15 mg/kg ± 

1.19) and those grown in greenhouses (66.03 mg/kg ± 

2.02). Additionally, a negative correlation (R² = 0.95) was 

established between fruit surface temperature and 

lycopene levels, highlighting the importance of surface 

temperature in determining lycopene content. The 

higher the fruit surface temperature, the lower the 

lycopene content, especially under intense sunlight. This 

study confirms that the fruit surface temperature is a 

more accurate indicator of lycopene content than air 

temperature, particularly when the fruit is exposed to 

direct sunlight. In open field conditions, tomatoes are 

subjected to higher daytime temperatures and more 

intense sunlight, which can lead to reduced lycopene 

content. The lycopene content in greenhouse-grown 
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tomatoes was 40% higher than in field-grown tomatoes 

[89]. 

Later, in the study by Helyes et al. (2007), a 

relationship was established between solar radiation, 

fruit surface temperature, and lycopene content in 

indeterminate-type tomatoes (Lycopersicon esculentum 

Mill.) grown in the field on a trellis system. The results 

showed that the positive correlation between solar 

radiation and surface temperature was significantly 

stronger on non-shaded fruits (R² = 0.87) than on shaded 

fruits (R² = 0.79). This indicates increased solar radiation 

and fruit surface temperature may reduce lycopene 

content. A strong negative correlation (R² = 0.95) was 

found between surface temperature and lycopene 

content, confirming the loss of nutritional qualities in 

non-shaded fruits as temperature rises. These data 

emphasize the importance of controlling temperature 

and light conditions to maintain high lycopene content in 

tomatoes [90]. 

Fruit Ripening and Storage: Ripening conditions play a 

crucial role in determining the lycopene content in 

tomatoes. Studies have shown that fruits ripening at low 

temperatures (15 oC) or on the vine contain significantly 

more lycopene than fruits stored at 30 oC. This is 

confirmed by data from analyzing the hue index (a*) 

using the CIELab system, where fruits ripening on the 

cluster or at low temperatures show higher values [91]. 

Other studies have also highlighted the importance of 

storage temperature: ripening increases lycopene 

content if the temperature is maintained within the 

range of 8±2 oC, and packaging helps to preserve 

lycopene levels when proper storage conditions are 

maintained [92]. 

The Role of Regulators in Lycopene Accumulation 

Ethylene: Ethylene (ЕТ) is a plant hormone that plays a 

crucial role in fruit ripening. It coordinates the ripening 

process through a transcriptional network, interacting  

with developmental factors and epigenetic regulation, 

which affects gene expression during ripening [93]. Shen 

(2024) highlighted the SlFSR (Fruit Shelf-life Regulator) 

gene's role in regulating ethylene biosynthesis and 

lycopene content. One of the effects of ЕТ is the 

degradation of chlorophyll, which contributes to the 

color change of fruits from green to red. This process is 

also accompanied by increased lycopene concentration 

[94]. Ethylene accelerates ripening and influences 

changes in texture, taste, aroma, and post-harvest shelf 

life of fruits [95]. 

In addition to ЕТ, another important hormonal 

regulator involved in lycopene biosynthesis is Jasmonic 

acid (JA), which has been increasingly studied for its 

distinct and complementary effects. 

Jasmonic Acid: While ethylene has long been recognized 

as a key ripening regulator, recent studies have 

emphasized the influence of JA on lycopene 

accumulation. Experiments with mutants, such as spr2 

and def1 (deficient in JA levels), and the transgenic line 

35S::ProSystem (with enhanced JA activity), 

demonstrated that lycopene levels and the expression of 

its biosynthetic genes were significantly reduced in 

mutants. In contrast, they increased in plants with 

enhanced jasmonic acid signaling. Treatment of fruits 

with methyl jasmonate (MeJA) revealed a dose-

dependent effect, with the optimal concentration (0.5 

µM) restoring lycopene content in spr2 and def1 

mutants. Interestingly, JA can act independently of 

ethylene. In the Never Ripe (Nr) mutant, which is 

insensitive to ethylene, the application of MeJA still 

promoted lycopene accumulation and the activation of 

associated genes. This suggests an alternative, ethylene-

independent mechanism for regulating lycopene 

biosynthesis under the influence of jasmonic acid [96]. 

These results highlight the importance of JA as an 

additional regulator of carotenoid metabolism in tomato 
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fruits, opening up new possibilities for managing product 

quality through hormonal regulation. 

Together, ethylene and JA represent two distinct 

yet complementary hormonal pathways that modulate 

lycopene biosynthesis in tomatoes. Ethylene primarily 

drives the classical ripening cascade, while jasmonic acid 

can activate lycopene accumulation through both 

ethylene-dependent and -independent mechanisms. 

Understanding the interplay between these hormones 

provides valuable insight into optimizing fruit quality 

through integrated hormonal regulation strategies. 

Effect of Potassium Fertilizers: Various studies confirm 

that increasing potassium fertilizer doses positively affect 

lycopene content in tomato fruits [97-98]. 

Research by Shanshan Li (2006) on greenhouse-

grown tomato plants demonstrated that potassium 

concentration directly influences the biosynthesis of 

phytoene and phytofluene, colorless precursors of 

lycopene, and the expression of carotenoid biosynthesis 

genes. Increasing the potassium concentration to 10 

meq/L was associated with enhanced expression of the 

phytoene synthase and carotenoid isomerase genes, 

which led to increased lycopene content [99]. 

Regarding carbohydrate metabolism, potassium 

modulates the enzymes pyruvate kinase and 

phosphofructokinase. It affects the formation of acetyl-

CoA, which is involved in the production of isopentenyl 

diphosphate, the first precursor of carotenoids [100]. 

Effect of Potassium Doses: According to Serio et al. 

(2007), lycopene content in tomatoes increased linearly 

with higher potassium concentration in the nutrient 

solution, especially in genotypes with high pigment 

content [101]. Similar conclusions were made by Khan & 

Bakhsh (2012), who showed that the application of K₂O 

at a dose of up to 375 kg/ha increased lycopene content 

by 52.54%, but further increasing the dose to 450 kg/ha 

decreased its level. This is explained by the sensitivity of 

the lycopene biosynthesis process to potassium 

concentration in the cytoplasm of cells [102]. 

Studies by Taber et al. (2008) found that excessive 

potassium reduces lycopene levels, highlighting the need 

for balanced fertilizer use. A proper combination of 

nitrogen and potassium can enhance lycopene 

concentration and tomato quality [97]. 

Potassium and Ripening Stages: Kaori et al. (2024) found 

that a high potassium concentration (24 mM) increases 

lycopene content during the early stages of ripening and 

maintains its high levels until full ripening. These results 

emphasize the importance of managing potassium levels 

to produce fruits with enhanced nutraceutical value 

[103]. 

Similarly, Taber et al. (2008) observed that when 

potassium concentration increased from 5 to 13 

mmol/m³ during the reproductive stage, lycopene 

concentration increased by 39%, 49%, and 51% in the 

fruits of the first, third, and fifth clusters, respectively. 

The increased lycopene concentration was linked to the 

increased potassium supply to the tomato harvest [97]. 

Ecological and Physiological Interactions: Studies by 

Shabani Sangtarashani et al. (2013) show that under 

salinity conditions, an optimal potassium concentration 

(7 mM) helps improve fruit quality and enhance their 

antioxidant potential [98]. San Martín-Hernández et al. 

(2021) also noted the positive effect of potassium on the 

content of sugars, vitamin C, proteins, and carotenoids, 

including lycopene [104]. 

Recent advancements in precision agriculture have 

enabled targeted potassium delivery based on real-time 

plant nutrient sensing, allowing optimized lycopene 

enrichment with reduced environmental impact [105]. 

Impact of Balanced Nutrition and Organic Fertilizers: 

Balanced mineral and organic nutrition play a critical role 

in modulating lycopene biosynthesis in tomato fruits by 

influencing key physiological and metabolic pathways. 
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Mineral nutrition significantly influences the lycopene 

content in tomato fruits, as nitrogen, phosphorus, and 

potassium fertilizers directly or indirectly regulate fruit 

coloration by affecting pigment synthesis. Studies have 

shown that balanced fertilization significantly increases 

the lycopene content. In particular, Li et al. (2024) 

reported a 58.02% increase in lycopene concentration 

compared to the control, while reducing the fertilizer 

dose by 10% led to a decrease in lycopene levels [106]. 

Moreover, organic fertilizers also play a key role in 

enhancing the lycopene content and improving the 

overall quality of tomato fruits [107]. According to Gao 

(2023), when the organic matter content in the soil 

exceeds 20 g·kg⁻¹ and the total nitrogen content exceeds 

1 g·kg⁻¹, the lycopene concentration in the fruits 

increased by 23.95%. These data highlight the 

importance of an optimal balance of soil components, 

which promotes the intensity of fruit coloration and their 

nutritional value. This indicates that nutrient form and 

soil composition are crucial factors in optimizing fruit 

quality and nutritional value [108]. 

In addition, using fulvic acid-based preparations can 

significantly increase the lycopene content in tomato 

fruits. Fulvic acids, as part of humic substances, improve 

the absorption of nutrients by the plant, which positively 

affects the biosynthesis of carotenoids, including 

lycopene. Research confirms that treating tomatoes with 

fulvic acid increases the lycopene concentration, making 

the fruits more valuable in terms of antioxidant activity 

and nutraceutical significance. Numerous scientific 

studies have noted the effectiveness of fulvic-humic 

fertilizers in increasing lycopene content [57, 109-110]. 

In summary, an integrated approach involving 

balanced mineral fertilization and organic soil 

amendments, including fulvic acids, synergizes lycopene 

accumulation. This reinforces the importance of 

optimizing nutritional strategies for producing high-

quality, functionally enriched tomatoes. 

CONCLUSIONS 

Lycopene is one of the most important carotenoids in 

tomatoes, responsible for their antioxidant properties 

and health-promoting effects. It plays a significant role in 

neutralizing reactive oxygen species, activating 

detoxification enzymes, inducing apoptosis, and 

inhibiting abnormal cell proliferation. These biological 

activities contribute to the prevention of chronic diseases 

such as cancer and cardiovascular disorders, making 

lycopene a key compound in developing functional foods. 

Its accumulation in tomato fruits depends on 

various factors, including genetic characteristics, 

agronomic practices, and environmental conditions. 

Breeding tomato varieties rich in lycopene, especially 

with molecular markers and modern genomic tools, 

makes it possible to develop products with higher 

nutritional and biological value. Additionally, optimized 

agronomic practices- such as potassium fertilizers, 

growth regulators, temperature and light control, and 

post-harvest management- play a significant role in 

maintaining and enhancing lycopene levels. 

This review presents a novel, integrated approach 

combining the latest molecular genetics achievements 

with practical agronomy. Unlike previous reviews that 

mainly focused on genetic or agronomic aspects, this 

paper emphasizes the importance of their synergy. It 

offers a more holistic view of strategies to enhance 

lycopene accumulation in tomatoes. This comprehensive 

approach improves tomatoes' commercial and 

nutritional qualities and contributes to expanding their 

application in the development of functional foods and 

preventive nutrition. 
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