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ABSTRACT 

Background: In the context of global climate change, rising temperatures, water scarcity, and anthropogenic 

factors have accelerated land degradation processes. Salinization, a key driver of degradation, poses a significant 

threat to food security by drastically reducing crop productivity. Wheat, a staple crop crucial for food security, is 

highly susceptible to osmotic stress and ionic toxicity caused by salinization. Consequently, the desalination and 

dealkalinization of saline soils are crucial to support agricultural intensification. 

Objective: This study investigates the effectiveness of vinasse, a by-product of alcohol production, as a soil 

ameliorant for saline-alkaline soils and evaluates the qualitative and quantitative properties of wheat cultivated 

on reclaimed lands. Vinasse is a weak acid suspension containing organic matter and solid minerals. 

Methods: The research was conducted in 2023–2024 under field conditions. Saline soils were treated with vinasse, 

followed by soil washing, and winter wheat was cultivated in the reclaimed soil. 

Results: The application of vinasse neutralized the alkali reaction of the soil solution, displaced sodium from the 

soil’s absorption complex, and resulted in the desalination and dealkalinization of the soil profile. Winter wheat 
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cultivated on the improved soil yielded 3.4 t/ha. Chemical analysis of the wheat grains demonstrated high 

nutritional value and functionality, which are of significant importance. 

Conclusion: Vinasse is an effective agent for the chemical improvement of saline-alkaline soils. The slow 

interaction between tartaric acid in vinasse and soil carbonates ensures the gradual neutralization of alkali 

reactions and enhances soil quality throughout the profile. Wheat grown in the reclaimed soil exhibited superior 

qualitative and functional properties, highlighting the potential of vinasse in agricultural applications. 

Keywords: Vinasse, reclamation, functional food, winter wheat, desalination, dealkalinization. 
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INTRODUCTION 

Climate change [1-3], land degradation [4-6], unplanned 

land use [7-9], intensive agricultural practices, and 

biodiversity loss [10-12] collectively pose significant 

threats to global food security. Among these challenges, 

salinization is recognized as one of the primary drivers of 

land degradation. Currently, over 1 billion hectares of 

land globally are affected by salinization, which 

represents 25% of irrigated land, with 50% of this area 

experiencing secondary salinization to varying extents 

[13, 14]. Salinization significantly reduces soil 

productivity [15]. As a result of various anthropogenic 

factors, vast areas of land have been removed from 

agricultural use [16, 17]. To mitigate this pressing global 
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issue, which represents a significant threat to food 

security, it is crucial to rehabilitate lands impacted by 

salinization and alkalization and reintegrate them into 

agricultural cycles. Furthermore, efforts must be made to 

enhance the fertility of low-productive lands. 

A variety of ameliorants have been used to improve 

saline soils [18-21], and a range of different approaches 

have been demonstrated [22, 23]. Wheat (Triticum 

aestivum) is the most widely consumed cereal crop 

globally [24, 25], playing a crucial role in food security due 

to its high content of proteins, carbohydrates, and 

vitamins—nutrients that are essential for human health 

[26, 27]. Agriculture plays a crucial role in supporting 

human health, as it provides products with high 

nutritional and functional value, which are essential for 

maintaining well-being. Producers are increasingly 

focused on developing innovative methods to enhance 

the content of biologically active substances in 

agricultural products (28-33). 

However, soil salinization and alkalization pose 

significant challenges to wheat cultivation, as the crop is 

particularly vulnerable to osmotic stress and ion toxicity. 

Wheat yields are notably reduced under salinity stress, 

particularly when soil solution concentrations range from 

4 mS/cm [34]. 

The impact of salinity is particularly pronounced 

during xerothermic conditions [35]. Salinity accelerates 

all phenological phases of plant growth and development 

[36], which in turn leads to a reduction in grain yield [37]. 

Seed germination is an important stage in plant 

development; however, under osmotic stress conditions, 

the germination process is disrupted, which impairs 

overall plant growth and development [38-40]. Under 

conditions of high soil solution concentration, osmotic 

potential decreases, leading to impaired enzyme function 

and, consequently, disrupted plant metabolism [41]. 

Additionally, osmotic stress reduces the number of 

productive shoots, spikelets, and grain weight, ultimately 

diminishing yield [42]. Water availability in the soil is 

crucial for normal plant development, as all vital 

physiological processes depend on accessible water. In 

saline soil, however, osmotic stress reduces the available 

water potential in plant cells [43]. 

Studies have demonstrated that high soil solution 

concentration has a significantly negative impact on 

wheat grain quality. In soils with an alkaline reaction 

nitrogen assimilation is disrupted, resulting in a decrease 

in the protein content of wheat grain [44]. 

The aim of this study is to investigate the 

ameliorative effectiveness of waste generated during 

alcohol production, specifically bran, in the reclamation 

of saline soils. Additionally, the study will evaluate the 

qualitative and quantitative characteristics of winter 

wheat cultivated on the ameliorated soils. 

The brandy production process generates a 

significant amount of waste- vinasse, which contains 

5.647 g/l of acids, including 3.89 g/l of tartaric acid, 1.452 

g/l of malic acid, and 0.305 g/l of acetic acid. Additionally, 

vitamins are rich in nutrients, microelements, valuable 

vitamins, and enzymes. Due to its rich chemical 

composition, researchers have explored the potential of 

using vinasse to improve soil nutrition [45]. However, the 

disposal of vinasse into the environment poses significant 

risks to both aquatic and terrestrial animals, presenting a 

serious environmental issue [46]. 

MATERIALS AND METHODS 

The research was conducted during the 2023-2024 

period on a 0.18-hectare plot of land owned by a farmer 

in the semi-desert zone of the Republic of Armenia, 

specifically in the Yeraskhahun community of the Armavir 

region. For laboratory analysis, four soil samples were 

collected from the plot both before and after land 

reclamation. These samples were taken from the 
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following soil layers: 0-25 cm, 25-50 cm, 50-75 cm, and 

75-100 cm. Before reclamation, the land underwent

tillage, leveling, and the construction of embankments, 

resulting in the creation of three 600 m² micro-plots. A 

total of 3,600 tons of vinasse (at a rate of 20,000 tons/ha) 

was applied to the land, which was transported from the 

brandy factory using an autocissor. Afterward, the land 

was washed with a total of 41,000 m³ of wash water. 

Before reclamation, the chemical composition of 

the saline soil, the composition and ratio of exchangeable 

cations, and calcareousness were studied. The same 

laboratory analyses were conducted after reclamation. 

Following this, winter wheat (Nairi 68) was cultivated on 

both the reclaimed land (0.18 ha) and the irrigated 

meadow brown soils (0.15 ha). Sowing was done using 

row planting, with an inter-row distance of 15 cm and a 

planting depth of 5-6 cm. Irrigation was carried out 

through furrows, with three irrigation cycles, each 

delivering 1000 m³/ha. The wheat was fertilized with 

N150P120K90. Phosphorus and potassium fertilizers were 

applied during the main tillage, while nitrogen fertilizer 

was applied both during tillage (60 kg) and nutrition 

process (60 kg). Plant height, spike length, 1000-grain 

weight were measured, and wheat yield was determined. 

All studies were performed using standard methods. The 

chemical composition of wheat grown in both irrigated 

meadow gray soils and ameliorated soils was also 

analyzed. Laboratory tests were conducted at the 

Republic of Armenia Standard Diologi Laboratory, where 

the content of carbohydrates, proteins, gluten, and dry 

matter in the wheat grain was determined. 

RESULTS AND DISCUSSION 

Before reclamation, the chemical composition of the 

saline soil was analyzed. The results indicated that the 

reaction of soluble salts in the soil solution was strongly 

alkaline. The content of soluble salts in the top meter of 

soil was 1.09%, primarily due to the high concentrations 

of sulfates, chlorides, and carbonates (Table 1). 

Table 1. Chemical composition of soil solution of saline-alkaline soil before melioration 

Type of 

soil 

Layer of 

soil, cm 

pH EC, 

mS/cm 

Total 

salts, 

% 

Soluble ions, meq 100g of soil 

CO3
2- HCO3

- Cl- SO4
2- Ca2+ Mg2+ Na+ K+ 

Saline 

alkaline 

0-25 9.6 8.5 1.34 3.20 4.0 6.60 8.90 0.60 0.10 19.45 

25-50 9.8 7.9 1.07 1.90 4.50 8.50 2.90 0.09 0.15 16.90 

50-75 9.5 8.0 1.13 1.11 3.10 4.50 8.50 0.21 0.16 16.94 

75-100 9.3 6.4 0.82 0.50 2.19 5.10 4.61 0.25 0.17 13.10 

0-100 9.5 7.6 1.09 1.60 3.44 6.10 6.22 0.28 0.14 16.59 

After the introduction of vinasse into the soil, tartaric acid 

reacts with soil carbonate to form sodium, calcium, and 

magnesium tartrate. Sodium tartrate is water-soluble 

and is removed from the soil during the leaching process. 

Magnesium tartrate has low solubility, while calcium 

tartrate is insoluble in water. The interaction between 

tartaric acid and carbonates occurs very slowly, 

preventing the immediate neutralization of tartaric acid 

and maintaining an acidic reaction throughout the soil 

profile. Under these conditions, the solubility of the 

formed calcium tartrate increases, and soil carbonates 

are decomposed (Table 2). This leads to an increase in 

calcium concentration in the soil solution, which interacts 

with the sodium in the soil’s adsorption complex. As a 
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result, adsorbed sodium is displaced from the adsorption 

complex into the soil solution, where it reacts with 

tartaric acid to form sodium tartrate, a soluble compound 

that is removed through the drainage system during the 

washing process. Magnesium tartrate, unlike calcium 

tartrate, has relatively higher solubility, interacting with 

the adsorption complex and contributing to the 

alkalization process.  

As a result of dealkalization, the filtration rate 

increases (10-12 cm/day). The process of improving 

saline-alkaline soil with the vinasse leads to both 

desalination and dealkalization. 

Table 2. The amount of carbonates in saline alkaline, % 

Soil layer, cm CaCO3 MgCO3 CaCO3 MgCO3 

Before melioration After melioration 

0-25 11.1 3.3 10.5 3.1 

25-50 12.0 2.9 11.6 2.5 

50-75 10.5 2.8 10.0 2.4 

75-100 10.3 2.8 9.9 2.5 

After reclamation, the strongly alkaline pH in the soil 

solution is neutralized, and the toxic CO₃²⁻ ion is 

eliminated. The electrical conductivity of the soil solution 

decreases to 2.0-2.4 mS/cm, and the pH stabilizes at 7.7-

8.1 (Table 3). 

Table 3. Chemical composition of soil solution of saline alkaline soil after melioration 

Type of 

soil 

Layer of 

soil, cm 

pH EC, 

mS/cm 

Total  

salts, % 

Soluble ions, meq of 100g soil 

CO3
2- HCO3

- Cl- SO4
2- Ca2+ Mg2+ Na+ K+ 

Meliorated 

soil 

0-25 8.1 2.4 0.36 - 2.20 0.40 2.10 1.25 0.56 0.93 

25-50 8.0 2.2 0.26 - 1.50 0.35 0.90 0.95 0.64 0.88 

50-75 7.8 2.3 0.25 - 2.90 0.36 0.19 1.50 0.80 1.32 

75-100 7.7 2.0 0.28 - 3.60 0.30 0.04 0.90 0.90 3.12 

0-100 7.9 2,2 0.28 - 2.55 0.35 0.80 1.15 0.72 1.56 

The composition and ratio of exchangeable cations also 

improved during the reclamation process (Figure 1). 

Before reclamation, sodium predominated in the CEC 

(Cations Exchange Capacity) of the saline soil, comprising 

37.60-62.36%. During reclamation, sodium was displaced 

from the absorption complex, and the ESP in the 

reclaimed soil fell within the permissible limits. The 

amount of exchangeable calcium in the absorption 

complex increased. The significant rise in exchangeable 

magnesium is attributed to the relatively higher solubility 

of magnesium tartrate in the soil solution. The amount of 

absorbed potassium also increased, which can be 

explained by the interaction between tartaric potassium 

and absorbed sodium. As a result of the amelioration, the 

soil layer became dealkalized, however, the ratio of 

exchangeable cations remains unfavorable for crops, as 

the amount of exchangeable magnesium is high. The 

ideal ratio of exchangeable cations in the absorption 
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complex for crops is as follows: Ca> 60%, Mg< 30%, 

Na<15%, K< 5%. To increase the amount of calcium in the 

absorption complex, the use of calcium-containing 

compounds is recommended. 

Figure 1. The amount of exchangeable cations before and after melioration 

Following the completion of the land reclamation 

process, winter wheat was cultivated on both the 

reclaimed lands and the irrigated meadow brown soil in 

the semi-desert zone. The chemical composition of the 

irrigated meadow brown soil is presented in Table 4. The 

content of soluble salts in this soil exceeds the 

permissible limit, which is set at < 0.2%.
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Table 4. The chemical composition of irrigated meadow brown soil 

Soil layer, cm pH EC, mS/cm Total salts, % Na, meq of 100g soil Exchangeable cations, % 

Soluble Exchang. Ca Mg Na K 

0-25 8.00 3.7 0.40 2.50 3.50 50.00 32.00 14.00 4.00 

25-50 7.9 3.8 0.37 2.80 3.50 49.00 33.00 11.00 7.00 

Table 5. The amount of available nutrients in the soil, mg/kg of 100g soil 

Soil type Soil layer, cm N P2O5 K2O 

Irrigated meadow brown soil 0-25 1.2 0.45 10.6 

25-50 1.5 0.36 7.1 

The data on the nutrient content of the soils are provided 

in Table 5. The irrigated meadow brown soils are poorly 

supplied with available nutrients (Table 5). In the 

ameliorated soil, the plant height of winter wheat was 

86.6 cm (Table 6), the spike length was 8.0 cm, and the 

1000-grain weight was 54.370 g. In the irrigated meadow 

brown soil, the wheat plant height was 88.9 cm, the spike 

length was 8.1 cm, the 1000-grain weight was 52.100 g, 

and the grain yield was 3 t/ha. Based on the results of the 

study, it can be concluded that the 1000-grain weight of 

wheat grown in irrigated meadow brown soil was 2.27 g 

less, and the total yield was 0.4 t/ha -1 lower. 

Table 6. Productivity indicators and structural elements of winter wheat (Nairi 68) 

Variants Hight of the stem, cm Length of the spike, 

cm 

Weight of 1000 

grains, g 

Grain yield, t/ha-1 

Meliorated soil 86.6 8.0 54.370 3.4 

Irrigated meadow 

brown soil 

88․9 8․1 52.100 3․0 

The content of proteins, gluten, carbohydrates, and dry 

matter was determined in the winter wheat grain 

cultivated in peat-amended soil as well as in irrigated 

meadow soil (Table 7). 

Table 7.  Chemical composition of wheat grains, %  

Variants Proteins Gluten Carbohydrates Dry metter 

Meliorated soil 13.1 30.0 60.1 91.5 

Irrigated meadow brown soil 10.3 28.6 58.5 90.5 

The results of the study indicated that the content of 

functional elements-proteins, gluten, carbohydrates, and 

dry matter was higher in the wheat grain cultivated in 

vinasse-amended soil compared to that of wheat grown 

in irrigated meadow brown soil. 

Based on these findings, it can be concluded that wheat 

cultivated in vinasse-amended soil not only yielded 

higher quantities but also exhibited superior qualitative 

properties compared to wheat grown in irrigated 

meadow brown soil. 
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CONCLUSIONS 

The use of industrial waste, vinasse (at a rate of 10-20 

thousand t/ha), in the chemical reclamation of saline-

alkaline soils is effective. The slow interaction between 

tartaric acid and soil carbonates neutralizes the alkali 

reaction and promotes dealkalization and desalinization 

throughout the soil profile. Unlike other ameliorants, 

such as sulfuric acid and ferric iron, which exhibit low 

intensity due to the low solubility of gypsum 

accumulating on the soil surface, vinasse accelerates the 

reclamation process and improves the physical and 

chemical properties of the soil. Vinasse-treated soil 

creates favorable conditions for wheat growth and 

development. The resulting crop is both quantitatively 

and qualitatively superior to wheat grown in irrigated 

meadow brown soil. 

Abbreviations: RA: Republic of Armenia, CEC: Cations 

Exchange Capacity. 
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