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ABSTRACT 

Background: At this stage of agricultural development, the demand for modern wheat varieties have risen considerably. 

Beyond achieving maximum yield, it is now essential to produce grain that is both high-quality and safe. It is evident that 

addressing these challenges is nearly impossible through classical selection methods, which rely on a limited set of 

phenotypic indicators. Obtaining new varieties and enhancing the existing varieties of wheat to meet the needs of both 

the population and industry can only be achieved through advanced biotechnological methods, including molecular 

markers and genetic transformations. In this context, protein or biochemical markers are widely employed. Analyzing 

the electrophoresis spectrum and protein formula of gliadin enables the identification of key selection-genetic 

parameters of different wheat varieties. This approach also helps pinpoint the fractions and genotypes causing gluten 

intolerance or celiac disease. 

 

Objective: The objective of this study is to analyze the electrophoretic spectrum in gliadin of several valuable wheat 

varieties cultivated in Armenia. This includes identifying their protein profiles, conducting genomic analysis, and clarifying 

the genetic regulation and toxic epitopes that exhibit antigenic activity responsible for gluten intolerance. 
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Methods: The experimental studies were conducted during 2023-2024 at the Biological Research Laboratory of the 

“Agrobiotechnology Scientific Center,” a branch of ANAU. The study utilized wheat varieites commonly grown in 

Armenia, including Bezostaya 100, Aleksevich, Grom, Pobeda 75, Shkola, Victoria, Morets, Tanya and Kolchuga varieties 

of. Electrophoresis was performed on 8% polyacrylamide gel. 

Results: In the electrophoresis spectrum of the wheat varieties studied, the α, β, γ and ω regions were identified. The 

genes responsible for synthesizing the different fractions in these regions are located in 6A, 6B (S), 1A (S), 1 B (S) and 1D 

(S) chromosomes. Among the studied wheat varieties, only the Tanya was found to have an antigenic gliadin fraction

(fraction 7), which can trigger gluten intolerance and allergy. 

Conclusion: The results obtained can be used as genetic markers in the breeding process to develop new high-yield, 

antigen-free wheat varieties and improve existing ones. 

Keywords: Celiac disease, gliadin, protein, electrophoresis, genome, protein formula. 

©FFC 2024.  This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 

License (http://creativecommons.org/licenses/by/4.0) 
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INTRODUCTION 

The demand for functional foods is growing worldwide as 

consumers seek to improve their health without making 

drastic change to their diet. Bioactive compounds in 

functional foods provide benefit beyond basic nutrition, 

such as antioxidative properties and disease prevention. 

Although these compounds are present in small 

quantities across various foods, they have the potential 

to reduce the risk of developing disease [1-2]. Functional 

foods not only offer essential nutrients but also play a 

role in promoting overall health and reducing the 

likelihood of chronic illnesses.  [3–5].  Wheat (Triticum L.), 

one of the world’s primary crops, contains numerous 

phytochemicals and nutraceutical compounds. It 

provides significant amounts of the dietary fiber, protein, 

energy, vitamins, antioxidants, and minerals essential for 

a healthy life. Additionally, wheat protein is unique in its 

properties and has diverse potential food applications as 

a food ingredient [6-7].   

The protein content of the grain and its 

physicochemical properties are critical economic factors, 

as they directly impact the production of quality bakery 

and pasta products. The versatility of wheat protein in 

various food applications makes it an essential ingredient 

in the development of nutritional and functional foods 

[8]. The protein in wheat grain endosperm constitutes 

12-14% of its mass. They proteins are highly diverse but

can be classified based on their physiological functions 

into storage (residual) and protoplast (functional) 

proteins [9]. 

The storage proteins in the wheat grain are 

primarily gliadins and glutenin, which together form 

gluten. The highest concentration of gluten is highest is 

found in the cells of the sub-aleurone layer of the 

endosperm [10-11]. For over 250 years, gluten has been 

a focus of research for technologists, biochemists, 

breeders, and geneticists. 

Gluten was first discovered in 1728 by the Italian 

scientist J.B. Beccari [12-13]. In 1819, G. Taddei 

demonstrated that it is composed of two different 

proteins, identifying one are soluble in alcohol and 

naming it gliadin. Later, American researcher T.B. 

Osborne identified the second component of gluten, 

which is soluble in a base, and named it glutenin [18-19]. 

Gliadin and glutenin together make up 80-85% of the 

total protein content in the endosperm [20-21]. Gluten 

plays a unique role in the baking process. By absorbing 

large amounts of water, it forms a continuous protein 

matrix, that encapsulates starch granules, creating a 

network essential for fermentation. During this process, 

carbon dioxide is released, which relaxes the dough, gives 

it a porous structure, and increases the volume [22–24].  

Research has shown quantitative and qualitative 

traits of grain storage proteins are specific to each 

variety, are genetically determine, and are inherited in a 

codominant manner [25-26]. Each population within a 

species or variety has a unique genetic structure, 

distinguishing it from others. Gliadin and glutenin 

polymorphisms are now widely used as genetic markers 

to identify the genetic characteristics of different 

cultivars [27-28]. These markers provide valuable insights 

into the population-genetic and nutritional properties of 

both cultivated and wild wheat species.  

Currently, the separation of residual protein 

fractions and the identification of wheat varieties are 

carried out using polyacrylamide gel electrophoresis and 
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chromatography. Gliadin electrophoresis was first 

performed by R.W. Jones, in 1959 [28-29]. Subsequent 

research revealed that, under a constant electric field, 

gliadin separates into 4 zones: α1234567, β12345, 

γ12345, ω12345678 [30, 31]. This diversity is governed by 

a multigenic system, with the genes regulating the 

synthesis of different sections of α, β, γ and ω regions of 

gliadin located on different chromosomes (6A, CD (a), CB 

(S), 1 A (S), 1 B (S), 1D (S)) – a trait characteristic of the 

species [32]. Each allele encodes two or more gliadin 

polypeptides (electrophoretic fraction) that exhibit 

linked inheritance patterns (Figure 1) [33

Figure 1. The general structure of the wheat prolamin classes is diagrammed showing the main sequence domains, conserved cysteine 

residues (S), and intramolecular disulfide bonds (lines connecting Ss). The signal peptides (SIG) are shown in blue [34]. 

The molecular mass of the α, β, and γ fractions of 

gliadin ranges from 31,000 to 34,700 Da and constitutes 

80 to 90% of the total fractions [35, 36]. These fractions 

are rich in glutamic acid and glutamine, which makeup 

35-45% of their composition, followed by proline (15-

20%), cystine (2.5%), methionine (1%) and lysine (0.5-

0.7%) [37-38]. The α and β gliadins share a similar primary 

structure, consisting of approximately 250 and 300 amino 

acid residues, respectively. Their primary structure 

includes a signal peptide (20 amino acids), a stable N-

terminal domain (5 amino acid residues), a double 

proline-rich domain, and repeated glutamine 

sequences. These sequences contain characteristic 

heptapeptides (P-Q-P-Q-P-F-P) and pentapeptides (P-Q-

Q-P-Y) [37-38]. γ-gliadin polypeptides, on the other 

hand, consist of a series of domains (Figure 1). This 

includes a signal sequence of 20 amino acids, an N-

terminal peptide of 12 amino acid residues, and a 

subsequent domain primarily composed of proline and 

gluten [39].  
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In the electrophoresis spectrum of gliadin, the ω 

region accounts for 18-20% of the total. ω-gliadin has a 

very large molecular mass, ranging from 64,000-80,500 

Da. Its key characteristics include a very weak charge of 

molecules and a low or absent content of methionine and 

cystine, along with the presence of intramolecular S-S 

bonds (Figure 1). The overall structure of ω-gliadin 

consists of a signal peptide (19 amino acid residues), an 

N-terminal domain (10-11 residues), a repeat domain

that occupies 90-96% of the protein, and a C-terminal 

domain composed of 10-11 amino acid residues [40-41].  

While cereals play a vital role in the human diet, 

they can also pose health risks causing conditions like 

celiac disease (CD) or gluten intolerance and allergy. 

Celiac disease is a chronic genetic disease in which 

gluten-containing foods damage the mucosa of the small 

intestine, where the main absorption of nutrients occurs. 

In the case of this disease, the organism does not absorb 

enough proteins, fats, carbohydrates and vitamins, which 

leads to weight loss and exhaustion [42–46]. 

Gluten intolerance affects 0.5-1% of the population 

and develops in individuals with genetic abnormalities in 

their immune system. In these cases, the body recognizes 

gluten as an allergen, which leads to the activation of an 

immune response reaction [47]. 

CD-stimulating gliadin peptides typically contain

one or more antigenic determinants (epitopes) that can 

bind to T cells. These epitopes, which are usually rich in 

proline and glutamine, are resistant to degradation by 

protoplasm [48-49]. Such epitopes bind to specific 

haplotypes of the human leukocyte antigen (HLA) , 

forming leukocyte antigens HLA-DQ2 and HLA-DQ8. This 

binding triggers complex biochemical and biological 

changes in the cell, leading to the destruction of epithelial 

cells and atrophy of the small intestinal glands, which 

causes various diseases that may mask the true cause of 

the condition [40, 50–52]. 

Allergy to gluten is an acquired condition that can 

develop at any stage of life. For various reasons, the 

immune system od the patient begins to recognize the 

proteins in cereals as foreign and harmful, triggering a 

protective reaction against them [53]. 

It is proven that intestinal proteolytic dysfunction 

and allergy are due to gliadin function and genome [54-

55]. 

The purpose of this study is to examine the 

electrophoretic spectrum of gliadin from several valuable 

varieties of wheat cultivated in Armenia, decode their 

protein formulas, and perform genomic analysis. 

The results of the research, as genetic markers, will 

enable the control of the wheat breeding process 

through the genetic regulation of gliadin loci. This will 

help create new wheat varieties free of toxic (allergenic) 

gliadin fractions or improving existing ones for the 

population affected by celiac disease. 

MATERIALS AND METHODS 

Sampling: Experimental studies were conducted in 2023-

2024 at the Biological Research Laboratory of the 

“Agrobiotechnology Scientific Center” branch of ANAU. 

The Armenian cultivated wheat varieties used in the 

study were Bezostaya 100, Aleksevich, Grom, Pobeda 75, 

Shkola, Victoria, Morets, Tanya and Kolchuga. All the 

varieties studied are soft winter wheat cultivars of 

Russian production. 

Experimental studies: The wheat seeds were powdered, 

and the powder was then mixed with 10-fold of 0.2 M 

NaCl buffer and incubated at 45°C for 1 h. Afterward, the 

mixture was centrifuged at 8000× g for 30 min to remove 

the precipitation, and the pH of the supernatant was 
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adjusted to 6.4 using 2 M HCl. Following overnight 

storage at 4°C, the precipitate was collected by 

centrifugation (6000× g, 20 min, 4°C) and frozen at 24 °C 

for 24 h. Next, approximately 10 g of gliadin and 90 g of 

deionized water (10°C) were mixed using a glass rod, and 

the solution was homogenized twice. The supernatant 

was discarded, and the precipitate was dissolved in a  

minimal volume of a buffer solution containing 0.4 g of  

Tris, 3 ml of 1 M HCl,1 g of Sodium Dodecyl Sulfate 

(SDS), 5 g of sucrose, 18 g of urea, 2.5 mL of 

mercaptoethanol and 0.25 g of bromophenol blue in 

100 mL of water, centrifuged and used for 

electrophoresis. 

Electrophoresis was performed on an 8% 

polyacrylamide gel using a Multigel-long electrophoresis 

apparatus (Biometra, Germany) (Table 1).

Table 1. Conditions necessary for electrophoresis of gliadin protein. 

Protein Gel, 

% 

Gel length, 

cm 

Sample 

titer 

Buffer Power 

voltage, V 

Phoresis 

duration, hours gel electrode 

Gld 8 12 1:1 0.05 M tris HCl, 

pH=8,8 

0.016 M aluminum-

lactose, pH=8,7 

280 3,0 

After electrophoresis, the gel was fixed for 60 

minutes in a solution of ethanol, acetic acid, distilled 

water (40:10:60), then stained with Kummas G-250 dye 

for 30-60 minutes. The gel was then washed 3 times with 

washing buffer (10% acetic acid solution). Visualization of 

the gel was performed using the GelDoc Go (Bio-Rad, 

USA) system. Image analysis of the electrophoresis image 

was performed using GelAnalyzer 23.1.1 software. 

To decipher the gliadin spectrum and protein 

formulas of the samples studied, the research results 

were compared with the reference spectrum of 

gliadin (Figure 2) [30] Genomic analysis of gliadin was 

performed according to gliadin genetic regulations 

(Figure 3). 

     Figure 2. Reference spectrum of gliadin. 
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  Figure 3. Genetic regulations of gliadin. 

Statistical data processing was performed using 

SPSS and MS Excel programs, using standard methods of 

population-genetic research. 

RESULTS 

In the current conditions of agricultural intensification, 

the requirements for modern wheat varieties have 

changed significantly. In addition to maximum yield, it is 

also necessary to produce high-quality grain free of 

foreign genes and allergens, which is nearly impossible 

with classical breeding methods. Currently, molecular-

genetic markers are used to address these challenges, 

with the electrophoresis spectrum of wheat storage 

proteins proving irreplaceable for several key indicators 

[56-57]. 

The protein formulas and genetic regulations of 

gliadin for the studied wheat varieties are shown in 

Tables 2 and 3. The obtained results are statistically 

significant (P>0.99). 

Table 2. Protein formula of gliadin of different wheat varieties. 

№ Varieties of wheat Protein formula and fractions of gliadin (Gld) 

α β γ ω 

1 Bezostaya 100 0 3 5 1 2 1 3 4 7 

2 Aleksevich 0 5 3 5 2 4 5 

3 Grom 1 2 7 1 4 3 5 3 7 8 

4 Pobeda 75 2 1 3 5 2 3 4 1 2 3 6 8 

5 Shkola 0 1 2 4 5 1 2 5 1 2 3 4 6 7 

6 Victoria 2 4 6 5 3 5 1 2 3 7 

7 Morets 0 1 3 4 3 4 5 1 2 3 4 

8 Tanya 7 1 5 2 3 4 5 2 3 4 6 7 8 

9 Kolchuga 0 2 5 1 3 4 2 3 7 

According to the data in the table, the Bezostaya 

100 variety of wheat is distinguished by the sparse gliadin 

spectrum and bands in the foregram. There are 8 

polypeptides, including 2 β, 2 γ and 4 ω bands. The α-
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gliadin is missing. The genes regulating the synthesis of 

the β-gliadin fragments 3 5 are located in the 6B(S) and D 

chromosomes. The genes for the γ-gliadin fragments 1 

and 2 are located on the – 1A(S) and 1D(S) chromosomes, 

and the genes for ω-gliadin fragments 1, 3, 4, and 7 are 

located on the 1A(S), 1B(S) and 1D(S) chromosomes. 

The Aleksevich variety of wheat also does not show 

the abundant electrophoresis spectrum of gliadin, 

making it the variety with the lowest number of 

polypeptides. The α-gliadin is absent, and the genes 

regulating the synthesis of the β-gliadin fragment 5 are 

located on the 6B(S), D5 chromosomes. The genes γ-

gliadin fragments 3 and 5 are located on the 1A(S) 

chromosome, and the genes for the ω-gliadin fragments 

2, 4, and 5 are located on the 1B(S) chromosome (Table 

3).

Table 3. Genome analysis of different wheat varieties by protein markers 

№ Varieties of wheat 6A 6D(a) 6B(S) 1A(S) 1B(S) 1D(S) 

1 Bezostaya 100 - β 3 

D 5 

γ 1 2 

ω 1 7 

ω 3 4 γ 2 

ω 7 

2 Aleksevich - β 5 

D 5 

γ 3 5 ω 2 4 5 - 

3 Grom α 1 2 7 β 1 4 γ 3 5 

ω 7 

α 7 

ω 3 

ω 7 8 

4 Pobeda 75 α 2 β 1 3 5 

D 5 

γ 2 3 

ω 1 6 

γ 4 

ω 2 3 

γ 3 4 

ω 8 

5 Shkola - β 1 2 3 4 5 

D 5 

γ 1 2 5 

ω 1 7 

ω 2 3 4 6 γ 2 

ω 7 

6 Victoria α 2 4 6 β 5 

D 5 

γ 3 5 

ω 1 7 

ω 2 3 γ 3 

ω 7 

7 Morets - β 1 3 4 γ 3 4 5 

ω 1 

ω 2 3 4 γ 4 

8 Tanya α 7 β 1 

D 5 

γ 2 

γ 3 5 

ω 7 

γ 4 

ω 2 3 4 6 

α 7 

γ 2 3 

ω 7 8 

9 Kolchuga - β 2 5 

D 5 

γ 1 4 

ω 1 7 

ω 3 γ 4 

ω 7 

The formation of α 1 2 7, β 1 4, γ 3 5, ω 3 7 8 

fragments is characteristic of the gliadin electrophoresis 

spectrum of wheat variety Grom (Table 2). There are ten 

polypeptides. The genes synthesizing the specified 

fragments of α-gliadin are located on the 6A and 1B(S) 

chromosomes; the β-gliadin fragments are on the 6B(S) 

chromosome; the γ-gliadin fragments are on the 1A(S) 

chromosome; and the ω-gliadin fragments are on the 

1A(S), 1B(S), and 1D(S) chromosomes (Table 3). 

All 4 bands are also present in the electrophoresis 

spectrum of gliadin of the Pobeda 75 wheat variety. The 

genes responsible for the synthesis of  fragment 2 of α-

gliadin are located on the 6A chromosome, fragments 1 

3 5 of β-gliadin on the  6B(S) and D5 chromosome, 
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fragments 2 3 4 of γ-gliadin on the 1A(S), 1B(S), 1D(S) 

chromosome; and fragments 1 2 3 6 8 of ω-gliadin are 

located on 1A(S), 1B(S), 1D(S) chromosomes. There are 

twelve polypeptides in the electrophoresis spectrum of 

gliadin (Tables 23). 

According to the analysis of the electrophoretic 

spectrum of Shkola wheat variety, gliadin formed β, γ and 

ω bands, with α-gliadin is absent. The total number of 

polypeptides is thirteen. The genes regulating the 

synthesis of fragments 1, 2, 4, and 5 of β-gliadin are 

located on the 6B(S) and D5 chromosomes; fragments 1, 

2, and 5 of γ-gliadin are located on the 1A(S), 1D(S) 

chromosomes; and fragments 1 2 3 4 6 7 of ω-gliadin are 

located on the 1A(S), 1B(S), 1D(S) chromosomes (Tables 

2, 3). 

According to the electrophoretic formula of gliadin 

of the Victoria wheat variety, there are α 2 4 6, β 5, γ 3 5, 

and ω 1 2 3 7 bands, with corresponding fragments. The 

genes responsible for their synthesis are located as 

follows: α-gliadin on the 6A chromosome, β-gliadin on 

the 6B(S) chromosome, γ-gliadin on the 1A(S) and 1D(S) 

chromosome, and ω-gliadin on the 1A(S), 1B(S), 1D(S) 

chromosomes. The total number of polypeptides is ten 

(Tables 2, 3). 

The α-gliadin is absent in the electrophoresis 

spectrum of Morets wheat variety. The distribution of ten 

protein polypeptides in the other bands is following: β 1 

3 4, with synthesis genes located on the 6B(S) 

chromosome, γ 3 4 5 with genes located on the 1A(S) and 

1D(S) chromosome, ω 1 2 3 4 with genes located on the 

1A(S) and 1B(S) chromosomes (Tables 2, 3). 

The electrophoretic spectrum of gliadin from the 

Tanya wheat variety includes all four bands. The genes 

regulating the synthesis of fragment 7 of α-gliadin are 

located on the 6A and 1D(S) chromosomes, fragments 1 

5 of β-gliadin are located on the 6B(S) and D5 

chromosomes, fragments 2 3 4 5 of γ-gliadin are located 

on the 1A(S), 1B(S), and 1D(S) chromosomes, and 

fragments 2 3 4 6 7 8 of ω-gliadin are located on the 

1A(S), 1B(S), 1D(S) chromosomes (Tables 2, 3). 

The α-gliadin is absent in the electrophoretic 

spectrum of gliadin from the Kolchuga wheat variety. 

There are two fragments in the β-gliadin, and three 

fragments each in the γ- and ω-gliadins. The genes 

responsible for the synthesis of fragments of β-gliadin are 

located on the 6B(S) and D5 chromosomes, the 

fragments 1 3 4 of γ-gliadin are located on the 1A(S) and 

1D(S) chromosomes, the fragments 2 3 7 of ω-gliadin are 

located on the 1A(S) and 1D(S) chromosomes (Table 2, 3). 

It should be noted that the genes responsible for 

gliadin synthesis are not located on 6D(a) chromosome in 

any of the studied wheat varieties. 

DISCUSSION 

Modern cultivated wheat varieties belong to two 

amphidiploid species: Triticum durum Desf and Triticum 

aestivum L. The first, T. durum, is tetraploid (2n=28) with 

the genomic formula AABB, while the second, T. 

aestivum, is hexaploid (2n=48) with the genomic formula 

AABBDD [56]. However, electrophoresis results of 

residual proteins from both hard and soft wheat indicate 

that these forms share identical genomes. The 

differences between varieties are attributed to the 

genetic diversity of the same genome. Furthermore, 

interspecific and intervarietal polymorphism of proteins 

and enzymes has been observed [59-60]. 

Regarding the genetic regulation of residual 

proteins of wheat, several researchers have noted that 

the genetic control of different gliding bands and 

fractions is associated with six chromosomes: 1A, 1B, 1D, 

6A, 6B, 6D, within the respective groups of the first and 

sixth chromosome sets [31, 61–63]. 

Based on their analysis of the gliadin 

electrophoresis spectrum of the Kubanka wheat variety, 

T.I. Peneva and O.A. Lyapunova concluded that the α-

gliadin is exclusively represented by four main fractions: 
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α 2 4 6 7, α 5 7, α 3 4 6 7, α 3 5 6 7. According to the 

authors, this structure is attributed to the ancient durum-

turgidum biotype of wheat. The genes responsible for 

synthesizing these fragments of α-gliadin are located on 

1A, 1B and 6B chromosomes [64]. 

Through their study of alleles and loci of residual 

proteins of soft winter wheat varieties, E.V. Zaika and 

colleagues reported that new alleles (Gli-Alx, Gli-Ble) are 

formed during intervarietal crosses. However, these 

alleles are found at very low frequencies and are 

associated with low baking quality [65]. 

Professional literature highlights a correlation 

between beneficial economic characteristics and gliadin 

fractions. According to researchers, wheat varieties 

where gliadin synthesis occurs on the Gld 1A, 1B, and 1D 

chromosomes show greater resistant to cold and 

drought. Furthermore, gliadin synthesized in Gld 1A5, 

1A4, and 1B1 chromosomes increases the baking 

quality.11, 21]. 

As a result of studying the electrophoretic spectrum 

of gliadin of wild relatives and local cultivars of wheat 

cultivated in Armenia and deciphering the protein 

formula, it was observed that gliadin separates into 4 

bands: α, β, γ and ω. Among these, α gliadin is found 

relatively rare. The genes responsible for the synthesis of 

β-gliadin are in 6B(S) and D5 chromosomes, γ-gliadin on 

the 1A(S) and 1B(S) chromosomes, and ω-gliadin on the 

1D(S) and 1A(S) chromosomes. Notably, no genes 

regulating the synthesis of gliadin fragments were found 

on 6D(a) chromosome in the studied samples [28]. 

Overall, there are few varieties with genes for 

synthesizing different gliadin bands and fragments 

located on 6D(a) chromosome [27]. 

Gliadin peptides that contribute to celiac disease or 

gluten intolerance typically contain one or more epitopes 

capable of binding to human T cells [45, 46]. Additionally, 

it is well established that different types of gliadins differ 

significantly in the epitope content associated with celiac 

disease [36]. 

Wheat-dependent exercise-induced anaphylaxis 

(WDEIA) and baker's asthma are two common IgE-

induced wheat allergens with an estimated frequency up 

to 2% [66-67]. 

D.W. Wang and his colleagues, studying the

electrophoresis spectrum of gliadin of Xiaoyan 81 wheat 

variety, reported the presence of 24 CD epitopes. Among 

these, the toxic peptide of α-gliadin is composed of 33 

amino acid residues and includes three epitopes: DQ2.5-

glia-a1a, DQ2.5-glia -a1b and DQ2.5-glia-a2 encoded by 

the D genome [40]. 

A scientist studying the presence of celiac disease 

and WDEIA epitopes in the gliadin spectrum of various 

varieties of wheat reported that α-gliadin contains a 

significant number of toxic epitopes, the genes 

responsible for the synthesis of its fractions are located 

on the D chromosome, such as α-D4, α-D5, α-D6, α-D8, 

and α-D9. In contrast, the B genome-encoded ω-B3 and 

ω-B6 fractions of ω-gliadin do not contain celiac disease 

epitopes. However, the D genome-encoded fractions of 

ω-gliadin – ω-D1, ω-D2, ω-D3-- contain 12-18 CD 

epitopes, while the ω-D4 fraction contains 33 WDEIA 

epitopes [54]. 

It is evident that gluten sensitivity and allergy are 

influenced by the presence of specific spectra of α and ω 

gliadins, determined by the chromosomal location of the 

genes synthesizing them. Only four of the wheat varieties 

studied by us contain α-gliadin: Grom, Pobeda 75, 

Victoria, Tanya. However, none of them have α-gliadin 

synthesis genes on 6D(a) chromosome. Additionally, the 

genes responsible for the synthesis of the fragment 7 of 

α-gliadin in the Tanya wheat variety are located on the 

1D(S) chromosome and included four epitopes 

associated with gluten intolerance. Of the nine wheat 

varieties studied, only Tanya was identified as a potential 

cause of celiac disease. 
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Currently, improving flour quality while reducing 

the amount of toxic gluten fractions is a critical challenge. 

One potential solution involves a molecular genetic 

approach, where the synthesis of unwanted gliadin is 

stopped due to RNA interference. 

F. Barro and colleagues successfully suppressed the

high expression of the genes responsible for the 

synthesizing α-, γ-, and ω-gliadins by employing RNA 

constructs. This method targeted CD epitopes from the 

highly immunogenic α- and ω-gliadins while preserving 

the total protein and starch content of the grain [68]. 

CONCLUSION 

In the electrophoresis spectrum of gliadin from the 

wheat varieties studied, all bands are present except for 

α-gliadin, which appeared with a frequency of 44.4%. The 

genes responsible for synthesizing the different fractions 

of α-, β-, γ-, and ω-gliadins are located on 6A, 6B(S), 1B(S), 

and 1D(S) chromosomes. However, no genes for gliadin 

fragment synthesis were found on the 6D(a) 

chromosome. 

Among the wheat varieties studied, Tanya is the 

only one where the genes responsible for the synthesis 

of fragment 7 of α-gliadin are located on the 1D(S) 

chromosome. This type of gluten can function as an 

antigen, potentially triggering celiac disease or gluten 

intolerance. 

These findings can serve as genetic markers for 

developing new wheat varieties with desirable economic 

and biological characteristics, free from the gliadin 

fractions that cause celiac disease. Additionally, they can 

aide in improving existing varieties of wheat. 

The results of a similar research conducted for the 

first time in Armenia would contribute to the production 

of safe food and the proper and efficient utilization of 

genetic resources. 
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