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ABSTRACT 

Background: Diabetes is a chronic metabolic disorder marked by persistent elevated blood sugar concentrations and 

disturbances in the metabolism of carbohydrates, lipids, and proteins. Several functional foods and naturally occurring 

compounds derived from plants have therapeutic potential for managing diabetes and its associated metabolic 

abnormalities of lipids. Ferulic acid is a bioactive compound present in numerous functional foods. It provides an 

extensive array of health advantages, encompassing a diverse spectrum of benefits. 

Objective: The objective of this study was to assess the effect of 50 mg/kg body weight of Ferulic acid (FA50) on the lipid 

profile status in diabetic rats induced with Streptozotocin (STZ). 

Materials and methods: Experimental diabetes was created on male albino Sprague Dawley rats. The rats were 

categorized into five distinct groups- Normal (Group 1), Normal+ FA50 (Group 2), Diabetic control (Group 3), Diabetic + 

FA50 (Group 4), and Diabetic + Glibenclamide (Group 5). Diabetes was induced in Group 3, 4, and 5 by administering an 

I.P (intraperitoneal) injection of STZ (40 mg/kg body weight). Rats of groups 2 and 4 were orally administered with 50 mg

of FA per rat’s body weight in Kg. Group 5 was treated with Glibenclamide (5 mg/ Kg body weight) daily for two months. 

On the 60th day, rats from all groups were euthanized, and blood samples were gathered for the purpose of conducting 

biochemical assessments. 
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Results: The injection of STZ resulted in a significant increase in blood glucose, HbA1c, and lipid profile markers in the 

experimental rats. Oral administration of Ferulic acid and Glibenclamide drug to diabetic rats significantly (P ≤ 0.05) 

lowered hyperglycemia, triglycerides, and total cholesterol compared to the diabetic control group. Moreover, the 

administration of Ferulic acid significantly increased the levels of HDL-cholesterol and regulated the Apo lipoprotein A1- 

Apo lipoprotein B levels. 

Conclusion: The current research demonstrates the advantageous impact of Ferulic acid in improving lipid-related 

metabolic complications associated with diabetes. 
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INTRODUCTION 

Diabetes is a prevalent metabolic disorder marked by 

elevated blood sugar levels [1,2]. It is associated with 

disturbances in carbohydrate, lipid, and protein 

metabolism [3]. Diabetes can lead to dyslipidemia, a 

condition characterized by irregularities in blood lipid 

levels. Typically, this entails elevated levels of 

triglycerides and low-density lipoprotein cholesterol 

(LDL-C), accompanied by decreased high-density 

lipoprotein cholesterol (HDL-C). This imbalance in the 

lipid profile is associated with a higher likelihood of 

cardiovascular ailment among individuals with diabetes. 

Diabetic dyslipidemia is commonly seen in diabetes due 

to insulin-related disruptions in lipid metabolism [4]. 

Unregulated high blood sugar can give rise to 

complications such as heart disease, vision issues, kidney 

disease, and nerve damage [5]. The lipid particles in 

diabetic dyslipidemia are believed to be more likely to 

cause atherosclerosis [6,7]. 
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Dietary supplements and nutraceuticals are orally 

consumed products that consist of various ingredients, 

including nutrients, minerals, plant extracts, herbs, 

amino acids, enzymes, or additional dietary elements [8]. 

The purpose of these products is to complement the diet 

by offering extra nutrients or promoting health benefits 

[9–11]. Abundant evidence supports the potent 

antioxidant properties and advantageous therapeutic 

effects of flavonoids found in the diet [12–15]. The 

hydroxy-cinnamates, primary components found in fruits 

(such as oranges), certain vegetables (like tomatoes and 

carrots), beverages (including beer), and grains (such as 

rice bran and wheat bran), exhibit significant antioxidant 

capacity [16]. Ferulic acid (FA), also known as 3-methoxy 

4-hydroxy-cinnamic acid. FA belongs to the group of

cinnamic acid derivatives and is a highly bioavailable 

dietary flavonoid. FA protects against liver damage 

caused by diabetes and serves as a remedy for 

inflammation, aging, and diabetes due to its anti-

inflammatory, anti-aging, and anti-diabetic properties 

[17]. Furthermore, there is documented evidence that FA 

can disrupt the cascade of free radical chain reactions, 

thereby reducing the susceptibility to cardiovascular 

ailments. [18]. As such, our investigation centered on 

examining the impact of FA on lipid profiles in diabetes-

induced rats. 

MATERIALS AND METHODS 

Chemicals: In this research, all chemicals employed were 

of analytical quality and obtained from Sigma–Aldrich, Hi-

Media, and Sisco Research Laboratories. 

Induction of experimental diabetes in rats: Male 

Sprague Dawley rats were induced with diabetes by 

means of intraperitoneal administration of 

Streptozotocin (STZ) dissolved in pH 4.5 citrate buffer at 

a dose of 40 mg/kg. To counteract the resultant drug-

induced hypoglycemia, rats that received the STZ 

injection were provided with a 20% glucose solution 

overnight. Rats demonstrating blood glucose levels 

surpassing 250 mg/dl were categorized as diabetic and 

subsequently included in the research. The Institutional 

Animal Ethics Committee granted approval for this study 

(Ethical sanction number: IAEC-3-KU-03/2018-19-BCH-

SM (43)). 

Experimental design: The rat subjects were divided into 

five distinct groups, each comprising six rats, and 

designated as follows:  

1. The Normal group, in which rats received a

regular diet without any treatment (N).

2. The Normal+FA50 group, composed of normal

rats treated with a dose of 50 mg/kg body weight

FA.

3. The third group included rats with diabetes

induced by STZ, serving as the diabetic control

group.

4. The Diabetic+FA50 group, consisting of STZ-

induced diabetic rats administered with a 50

mg/kg body weight dosage of FA [19].

5. The Diabetic+glibenclamide group, comprising

STZ-induced diabetic rats treated with

glibenclamide at a dose of 5 mg/kg body weight

[20].

For duration of 60 days, the rats received daily 

intragastric administrations of freshly prepared 

suspensions of FA and glibenclamide, as per their 

respective groups. After the completion of the treatment 

period, the rats underwent an overnight fasting period, 

following which they were sacrificed, and blood samples 

were collected for various analyses. 

Biochemical studies: Glucose oxidase method was used 

to estimate blood glucose level [21]. Glycated 
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hemoglobin was assessed using the HbA1c kit from 

Beacon Diagnostics Pvt Ltd. Following the manufacturer's 

guidelines from AGAPPE Diagnostic Pvt Ltd, 

measurements for total cholesterol (TC), triglycerides 

(TG), HDL-cholesterol (HDL-C), LDL-cholesterol, Apo 

lipoprotein A1 (Apo A1), and Apo lipoprotein B (Apo B) 

were conducted (Agappe Diagnostics Limited, 

Ernakulum, Kerala). 

Statistical Analysis: Analysis was carried out using 

GraphPad Prism 7.0, employing both one-way and two-

way ANOVA. The outcomes are displayed as the mean ± 

SEM (n = 6). Statistical significance was determined at a 

level of 0.05 or below (P ≤ 0.05). 

RESULTS 

Body weight: Body weights of the animal groups were 

recorded on the initial and final days of the experimental 

period. The diabetic control group showed a significant 

decrease in body weight (123.5 ± 3.2 g) compared to the 

normal control rats (166.3 ± 4.5 g) at the end of the 

experimental period. A comparable effect was observed 

between N and N+FA50 groups. Body weight increased 

significantly in D+FA50 group (170.5 ± 3.9 g) when 

compared to the diabetic control group. A comparable 

effect was observed in the diabetic rats of both groups 

D+FA50 and D+G. The body weight variation of the rats 

at day 1 and day 60 are shown in Figure 1. 

Figure 1. Change in body weight. Data is presented as the mean ± standard error of the mean, with a sample size of six. The 

symbols 'a' denote significant differences from Normal, 'b' represents significant differences from diabetic control, and 'c' signifies 

significant distinctions between the Diabetic+FA50 and Diabetic+glibenclamide group. A significance level of p ≤ 0.05 was employed for 

determining statistical significance. 

Blood glucose: Rats with experimentally 

induced diabetes exhibited pronounced 

hyperglycemia, evidenced by elevated levels of 

glucose measuring 371.20 ± 3.58 mg/dl. Notably, the 

supplementation of FA50 to diabetic rats led to 

substantial improvement. Oral administration of FA at 

a dose of 50 mg/kg body 

weight over the span of 60 days resulted in a significant 

reduction (P ≤ 0.05) in glucose levels, reaching 178.97 ± 

5.1 mg/dl by the conclusion of the treatment period 

(Figure 2). Comparable effects were observed between 

the N and N+FA50 groups. 
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Figure 2. Blood sugar level. Data is presented as the mean ± standard error of the mean, with a sample size of six. The 

symbols 'a' denote significant differences from Normal, 'b' represents significant differences from diabetic control, and 'c' signifies 

significant distinctions between the Diabetic+FA50 and Diabetic+glibenclamide group. A significance level of p ≤ 0.05 was employed for 

determining statistical significance. 

Glycated hemoglobin (HbA1c): In the diabetic control 

rats, there was a substantial rise in HbA1c levels (13.93 ± 

1.45%) when compared to the normal groups. However, 

upon administering FA, the levels of glycated hemoglobin 

in diabetic control rats decreased notably to 7.65 ± 

0.70%. The visual representation of this outcome is 

presented in Figure 3. Remarkably, the effect of 

administering FA was akin to the impact of the standard 

drug glibenclamide. Furthermore, both the N and 

N+FA50 groups exhibited a similar effect on HbA1c levels. 

Figure 3. Glycated hemoglobin: Data is presented as the mean ± standard error of the mean, with a sample size of six. The symbols 

'a' denote significant differences from Normal, 'b' represents significant differences from diabetic control, and 'c' signifies significant 

distinctions between the Diabetic+FA50 and Diabetic+glibenclamide group. A significance level of p ≤ 0.05 was employed to determine 

statistical significance. 
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Serum Total cholesterol (TC) and Triglycerides (TG): 

Figure 4 illustrates the levels of TC and TG in the 

experimental animals at the conclusion of the study. 

There was a significant increase (P ≤ 0.05) in the TC and 

TG levels in the diabetic group (116.64 ± 7.73 mg/dl and 

95.32 ± 2.92 mg/dl) as compared to normal group (45.71 

± 2.74 mg/dl and 35.38 ± 2.56 mg/dl), which was 

significantly decreased ((P ≤ 0.05) by glibenclamide and 

FA50 treated groups respectively (89.23 ± 6.08 and 76.9 

± 2.08 mg/dl) as compared with diabetic group. Both N 

and N+FA50 groups showed a comparable effect. 

Figure 4.  Serum TC and TG levels:  Data is presented as the mean ± standard error of the mean, with a sample size of six. The symbols 

'a' denote significant differences from Normal; 'b' represents significant differences from diabetic control. A significance level of p ≤ 0.05 

was employed for determining statistical significance. 

HDL-C & LDL-C levels: In Figure 5, a notable reduction (P 

≤ 0.05) in serum HDL-C levels among the diabetic control 

rats is evident when compared to the normal group. 

Conversely, both the glibenclamide and FA50-treated 

groups exhibited a noteworthy increase (P ≤ 0.05) in 

serum HDL-C levels in contrast to the diabetic group. 

Furthermore, a substantial elevation (P ≤ 0.05) in serum 

LDL-C levels was observed within the diabetic groups 

when compared to the normal group. However, the 

D+FA50 groups demonstrated a significant decrease in 

serum LDL-C levels when compared to the diabetic group. 

It is worth noting that similar effects on HDL-C and LDL-C 

were observed in both the N and N+FA50 groups. 

Figure 5. Serum HDL-C and LDL-C levels:  Data is presented as the mean ± standard error of the mean, with a sample size of six. The 

symbols 'a' denote significant differences from Normal, 'b' represents significant differences from diabetic control, and 'c' signifies 

significant distinctions between the Diabetic+FA50 and Diabetic+glibenclamide group. A significance level of p ≤ 0.05 was employed to 

determine statistical significance. 
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Serum Apo A1 & Apo B: In diabetic control rats, a 

noteworthy decrease in Apo A1 levels (P ≤ 0.05) was 

evident when contrasted with normal rats. Conversely, a 

significant elevation (P ≤ 0.05) in Apo A1 levels was 

noted among animals treated with FA50 (50 mg/kg body 

weight). Meanwhile, the Apo B levels exhibited a 

significant increase (P ≤ 0.05) in diabetic rats in 

comparison to non-diabetic rats. However, in diabetic 

rats subjected to FA50 treatment, a marked reduction (P 

≤ 0.05) in Apo B levels was observed. Notably, the impact 

of FA50 treatment was on par with that of the standard 

drug glibenclamide. These outcomes are graphically 

depicted in Figure 6. 

Figure 6. Serum Apo A1 and Apo B:  Data is presented as the mean ± standard error of the mean, with a sample size of six. The 

symbols 'a' denote significant differences from Normal; 'b' represents significant differences from diabetic control. A significance level of 

p ≤ 0.05 was employed to determine statistical significance. 

DISCUSSION 

Diabetes is a metabolic disorder characterized by high 

blood sugar levels and often linked to complications 

arising from abnormalities in lipid levels [22]. Managing 

blood sugar levels through medications, lifestyle 

changes, and a healthy diet can help alleviate these lipid-

related complications and reduce the risk of 

cardiovascular problems [23,24]. More than a third of 

diabetes patients have dyslipidemia, which includes high 

LDL and total cholesterol, low HDL, and high triglycerides 

[25]. High levels of total cholesterol are the main causes 

of coronary heart disease. It is widely known that people 

with diabetes have higher rates of hyperlipidemia and 

atherosclerosis. The correlation between blood sugar 

levels and lipid profile offers a chance for the early 

identification and management of lipid-related issues. 

This proactive approach can effectively lower the 

susceptibility to cardiovascular and other conditions 

among individuals diagnosed with type-2 diabetes. 

Within this current investigation, the study aimed to 

ascertain the shielding influences of the phenolic 

phytochemical FA on the lipid profiles of diabetic rats 

induced by STZ. For comparative purposes, the standard 

antidiabetic medication, glibenclamide, was employed. 

STZ stands as a widely utilized agent to induce 

diabetes mellitus in experimental animals [22]. Through 

its impact on the destruction of beta cells and 

subsequent reduction in insulin production, STZ 

administration brings forth diabetes [15]. In this context, 

male Sprague Dawley rats were induced into a diabetic 

state using an injection of 40 mg/kg of STZ, resulting in 

evident hyperglycemia accompanied by elevated glucose 
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and HbA1c levels. These findings align with the results of 

other investigations into STZ-induced experimental 

diabetes [26–28]. 

In our study, a 60-day supplementation of FA at a 

dosage of 50 mg/kg body weight exhibited a protective 

effect against diabetes in rats. This was achieved by 

effectively regulating their glucose levels. Notably, HbA1c 

emerges as a reliable marker for evaluating glycemic 

control within individuals affected by diabetes mellitus, 

additionally serving as a pivotal indicator for forecasting 

diabetes prognosis. Both FA and glibenclamide 

treatments contributed to decreased HbA1c levels in 

diabetic rats, highlighting their potential to manifest anti-

hyperglycemic effects. This outcome concurs with prior 

investigations that have underscored the hypoglycemic 

efficacy of FA in diabetic rats, further corroborating the 

alignment between our findings and the existing body of 

literature [25,29]. 

Elevated total cholesterol levels are a 

prominent characteristic of diabetes mellitus, 

contributing significantly to both morbidity and 

mortality [30]. Diabetes patients often suffer from 

hypertriglyceridemia, which leads to vascular 

complications. In STZ-induced diabetic rats, 

hypercholesterolemia and hypertriglyceridemia 

are primarily caused by insulin deficiency, resulting 

in increased lipolysis [31]. Following the administration 

of FA, a notable decrease in serum cholesterol and 

triglyceride levels was observed in diabetic rats. 

The hypocholesteromic action of FA may therefore 

contribute to lowering cholesterol and 

triglyceride levels in diabetic rats by inhibiting 

or activating enzymes involved in cholesterol 

metabolism.  Apolipoprotein A1 (Apo A1) and 

Apolipoprotein B (Apo B) are integral protein 

components found in distinct lipoprotein fractions 

[32]. Apo A1 is primarily associated with high-density 

lipoprotein (HDL) particles and plays a crucial role in 

their structure and function. It assists in the reverse 

cholesterol transport process, facilitating the 

transport of cholesterol from peripheral tissues to the 

liver for excretion. On the other hand, Apo B is primarily 

present in low-density lipoprotein (LDL) particles and is 

responsible for mediating the uptake of cholesterol by 

cells, contributing to the formation of atherosclerotic 

plaques when excessively accumulated [33]. Several 

studies underscore Apo A1 and Apo B as notably sensitive 

biomarkers with potential implications for cardiovascular 

diseases [4,34]. The present study shows the potential of 

FA in maintaining these lipid markers and offering 

protection against complications induced by diabetes. 

Therefore, FA supplementation may have a beneficial 

effect on lipid abnormalities in diabetic rats, thereby 

lowering cardiovascular risk.  

CONCLUSION 

The injection of STZ led to a noteworthy elevation in 

blood glucose, HbA1c, and lipid profile markers in the 

experimental rats. However, when diabetic rats were 

orally administered Ferulic acid and Glibenclamide, it 

resulted in a significant reduction in hyperglycemia, 

triglycerides, and total cholesterol levels and notably, the 

administration of Ferulic acid also led to a significant 

increase in HDL-cholesterol levels and played a role in 

regulating the balance between Apo lipoprotein A1 and 

Apo lipoprotein B levels. These findings underscore the 

potential therapeutic benefits of Ferulic acid in mitigating 

hyperglycemia and improving lipid profiles in diabetic 

rats. Hence, dietary supplements rich in FA may be 

helpful in ameliorating diabetes-associated lipid level 

abnormalities and related complications. 

Abbreviations: Apo A1: Apo lipoprotein A1; Apo B: Apo 

lipoprotein B; FA: Ferulic acid; HbA1c: Glycated 

hemoglobin; HDL-C: High-density lipoprotein cholesterol; 

LDL-C: Lowdensity lipoprotein cholesterol; STZ: 

Streptozotocin; TC: Total cholesterol; TG:Triglycerides 
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