
Bioactive Compounds in Health and Disease 2025; 8(8): 269 – 278 BCHD 
 

Page 269 of 278 

Research Article Open Access 

 

Pseudomonas fluorescens: Prospective green antimicrobial for 

crops cultivation 
 

Marina Melkumyan1, Bella Babayan*2, Alexander Yesayan2, Tigran Yesayan2, Garegin Sevoyan2, Armen Grigoryan3, 

Anna Grigoryan3,4 

 

1Scientific and Production center (SPC) “Armbiotechnology”, National Academy of Sciences of Republic of Armenia (NAS 

RA), 14 Gyurjyan St., 0056 Yerevan, Republic of Armenia (RA); 2Yerevan State University (YSU), Research Institute of Biology, 

1 Alex Manoogian, 0025 Yerevan, RA; 3Russian-Armenian (Slavonic) University (RAU), 123 Hovsep Emin St, 0051 Yerevan, 

RA; 4“Agrobiotechnology Scientific Center” Branch of ANAU (Armenian National Agrarian University) Foundation, 1 Isi le 

Mulino St., 1101 Ejmiatsin, RA. 

 

*Corresponding author: Bella Babayan, PhD, researcher, YSU, Research Institute of Biology, 1 Alex Manoogian, 0025 

Yerevan, Armenia. 

 

Submission Date: July 11th, 2025; Acceptance Date: July 29th, 2025; Publication Date: August 4th, 2025 

 

Please cite this article as: Melkumyan M., Babayan B., Yesayan A., Yesayan T., Sevoyan G., Grigoryan A., Grigoryan A. 

Pseudomonas fluorescens: Prospective green antimicrobial for crops cultivation. Bioactive Compounds in Health and 

Disease 2025; 8(8): 269 – 278. DOI: https://doi.org/10.31989/bchd.8i8.1716 

 

ABSTRACT 

Background: Throughout the 20th century, pesticides were ubiquitous in agriculture and food production as a method of 

controlling pest populations and maintaining high yields of crops. However, after decades of uncontrolled pesticide use, 

their hazardous properties were discovered by scientists. Thus, in the 21st century, the urgency of discovering a form of 

ecologically safe functional food production has become evident, as it is closely linked to the development of green 

agriculture. As a result, recent innovations in biological protection of crops have become highly relevant. In this regard, 

bioactive compounds produced by non-pathogenic Pseudomonas fluorescens, found in soil, may become a prospective 

bio-control agent of complex influence with potential in the targeted functionalization of crops.  

 

Objectives: Current research is devoted to investigation of the effect of P. fluorescens against the Pectobacterium 

carotovorum phytopathogen, which significantly reduces the yields of crops. Non-cellular extracts obtained from certain 

bacteria have been successfully tested against multi-drug-resistant strains of P. carotovorum. 
 

Results: Bactericidal and bacteriostatic activities of lipoprotein and lipopeptide complexes within non-cellular extracts 

of P. fluorescens were detected. The majority of the studied strains were antibiotic-resistant and produced extracellular 
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proteases, lipases, and polyphenol oxidases (PPOs). Proteases and PPOs are encoded by the bacterial chromosome, while 

lipases can be plasmid-encoded. They are associated with the resistance and biodegradation in both bacteria but are not 

transmissible.  
 

Conclusions: Within P. fluorescens samples, 20 strains exhibit antimicrobial activity and contain a wide variety of 

extracellular enzymes. According to the literature data, the presence of P. fluorescens in environment can enhance the 

antioxidant status of fruits, stimulate plant growth, boost their immunity and enhance stress tolerance. Based on all of 

this, P. fluorescens may be considered as a prospective complex biocontrol agent with potential in the functionalization 

of fruits and vegetables. Further research is recommended to investigate its potential as a green alternative for pesticide-

free crop cultivation and soil remediation. 
 

Key words: Pseudomonas fluorescens, Pectobacterium carotovorum, phytopathogen, crops biological protection, 

pesticide-free cultivation, food functionalization 
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INTRODUCTION  

The 20th century has shown the rise of large-scale 

pesticide production and their uncontrolled use. 

Dangerous side effects of pesticides, including genotoxic, 

teratogenic, and carcinogenic impacts, were identified in 

the 21st century [1-2]. In the modern day, high-quality 

food production is directly linked to green agriculture. 

The problem of food safety is crucial for the sustainable 

development of any country, because it is also related to 

healthcare [3-4].  

Alongside the effects of global climate change and 

other abiotic factors, phytopathogens and phytophagous 

pests pose the greatest threat to crop cultivation [5]. The 

main damage to crops and trees is caused by 

phytopathogenic bacteria, molds, parasitic fungi, and 

phytophagous worm pests. These include specific 
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microflora (tropical Pseudocercospora punicae, arctic 

Typhula borealis and Pythium polare, etc.) and common 

species (Pectobacterium carotovorum, Pseudomonas 

syringae, etc.). Due to both globalization and climate 

change, the plant protection problem has become 

increasingly severe [6]. Additionally, antimicrobial 

resistance (AMR) in pests is on the rise [7]. Therefore, the 

search for alternative solutions is crucial. Various 

biological methods of plant protection based on 

intraspecies interactions have been successfully 

implemented in the EU, UK, USA, and other countries [8-

10]. In the aforementioned countries, pesticide-free 

cultivation of crops with the application of mentioned 

methods promotes the increase in food quality and in 

human health in general. Thus, the promotion of healthy 

and functional food is critical [11-13]. 

P. fluorescens is a common, highly adaptable, 

predominantly non-pathogenic soil microbe. It forms 

various interactions with soil microflora and produces a 

wide variety of enzymes and other bioactive compounds 

that positively affect plant root growth, increase green 

biomass etc. Also, the presence of P. fluorescence in soil 

increases the consistency of bioflavonoids and ascorbic 

acid, which increases the antioxidant status of fruits and 

generally improves their nutrient characteristics [14-16].  

In the present study, the antimicrobial potential of 

P. fluorescens against P. carotovorum phytopathogen 

was investigated in the context of its potential 

application for the production of healthy and potentially 

functional foods. The main novelty of the present study 

lies in the primary screening of some local Armenian 

strains of P. fluorescens tested against the local P. 

carotovorum strains, isolated from the various regions of 

RA, which have not been previously studied in this 

context. 
 

MATERIALS AND METHODS 

Cultivation of microbial cultures: The strains from 

National Culture Collection of the Microbial Depository 

Center (MDC), “Armbiotechnology” SPC NAS RA, were 

studied. They were cultivated on L-agar and L-broth 

media at 30 °C [17]. Qualitative AMR tests were 

performed in vitro against 14 antibiotics: 

chloramphenicol (Cam), kanamycin (Kan), gentamicin 

(Gnc), streptomycin (Stp), tetracycline (Tcn), amoxiclav 

(Amc), amoxicillin (Amx), ampicillin (Amp), penicillin 

(Pcn), cefixime (Cfx), ceftriaxone (Cro), ciprofloxacin 

(Cip), levofloxacin (Lfx), and azithromycin (Azm), using 

the disk diffusion method [18]. 

 

Genetic and biochemical studies of bacterial strains: 

Genetic studies were performed using PCR with catB7, 

blaOXA-10, aac(6’)II, aph(3’)IV primers. Plasmids were 

studied using Mandel’s transformation method and 

agarose gel electrophoresis with Safe-Green dye [19,20]. 

Biochemical assays were performed in vitro according to 

standard protocols for qualitative assessment of 

extracellular proteases, lipases, and PPOs. Tannin, α-

naphthol, and L-Tyr (tyrosine) were used for PPOs 

detection. Polysorbates were used for lipases. Caseinase 

and gelatinase were assessed using milk agar and the 

photographic films [21-24]. 

 

In vitro study of interaction between P. fluorescens and 

P. carotovorum: The effect of P. fluorescens on P. 

carotovorum growth was studied in vitro using classical 

microbiological methods. Disc diffusion method was used 

to assess the activity of non-cellular extracts obtained by 

filtering overnight cultures of each strain through nylon 

membranes (0.2 mcm). The bilayer agar method was 

applied to assess the activity of fresh cultures [25-27]. 

Spectrophotometry was used for experiments in liquid 

media [28-30]. The active components of the extracts 

were analyzed using UV/Vis (ultraviolet–visible) 

spectroscopy and FTIR-ATR (Fourier-transform infrared 

spectroscopy with attenuated total reflectance) [31,32]. 

 

Statistical assessment: The entire study was conducted 

in triplicate, with each experiment repeated three times 

under identical conditions. For statistical analysis, 

Microsoft Excel software was used. Image digitization 

and quantification were performed using both ImageJ 

and ImageJ2 software [33-34].  
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RESULTS AND DISCUSSION 

As the first step of our research, a primary evaluation of  

the antimicrobial activity of P. fluorescens was carried  

out. The anti-phytopathogenic properties of P. 

fluorescens were assessed against ten P. carotovorum 

cultures. The results are presented in Fig. 1 and Table 1. 

 

   

Fig. 1. Thermogram of P. fluorescens bacteriostatic (left) and bactericide (right) effects. 

 

Table 1. Antiphytopathogenic effect of P. fluorescens against P. carotovorum. 
 

P. carotovorum 

Strain 

P. fluorescens non-cellular extracts C 

9068 9069 9072 9077 9085 9089 9090 9091 9092 9094 9138 

8690 8 - - - - - 6 - - 5 - + 

8694 9 8 10 - - 8 8 6 - 11 - + 

8698 7 9 10 6 7 13 8 11 7 - 7 + 

8702 10 - 11 11 12 8 9 11 7 9 + + 

8705 9 9 9 8 8 7 9 8 8 7 10 + 

8717 8 - 7 8 8 4 6 6 7 6 - + 

8756 8 - 9 - 9 4 7 6 + 8 - + 

8764 8 - 6 - 7 6 + 7 7 6 10 + 

8765 9 9 11 7 11 8 10 7 8 10 7 + 

8758 9 8 10 7 8 8 8 7 8 8 9 + 

 

Then for the understanding of the mechanisms of 

the discovered antimicrobial activity, the spectroscopic 

analyses of bioactive compounds of extracts, obtained 

from the most active strains of P. fluorescens were 

performed. The results of the experiments with FTIR-ATR 

and UV/Vis spectroscopy are presented on Fig. 2 
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          Fig. 2. UV/Vis spectroscopic study of active bactericide components of non-cellular extract of P. fluorescens 9089. 

 

 

 
 

Fig. 3. FTIR-ATR spectroscopic study of active bactericide components of non-cellular extract P. fluorescens 9089. 

 

Additionally, some bacteriostatic effects were 

observed for P. fluorescens 9077, 9085, 9138, and 9068, 

while the remaining strains exhibited bactericidal 

activity. Then, AMR tests were performed, along with 

assessments of biodegradation and soil remediation 

potential (Tab. 2, Fig. 4). 

 

Table 2. Antibiotic-resistance profiles of P. fluorescens typical representatives. 
 

Strain Antibiotic-resistance (50 mcg/mL)  

С Azm Stp Gnc Kan Amc Amx Amp Pcn Cip Lfx Tcn Cfx Cro Cam 

9068 - - - - - - R - - - R - - - + 

9069 - - - - R R R R - - R R S R + 

9077 - - - - R R R R - - R R R - + 
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After the series of microbiological experiments to 

assess antimicrobial resistance (AMR), appropriate 

biochemical and genetic analyses were conducted with 

the purpose of understanding the mechanisms 

underlying the detected resistance profiles of the studied 

bacterial cultures (Fig. 3). 

 

A  B  
 

Fig. 4. PCR analysis (A) and enzyme analyses (B) of various strains of P. fluorescens. 

 

The majority of the P. fluorescens strains exhibited AMR, 

indicating their high adaptive potential. Notably, both 

fresh cultures and non-cellular extracts of P. fluorescens 

20 strains inhibited multi-drug resistant strains of P. 

carotovorum. P. fluorescens strain 9085 was maximally 

active. FTIR-ATR and UV/Vis analyses have shown the 

presence of lipoprotein and lipopeptide compounds in 

the extracts. The biosynthesis of analogous antimicrobial 

compounds (bacteriocins, keanumycins A–C, etc.) were 

identified in other bacterial species worldwide [35-36]. 

Thus, these findings underscore the relevance of 

investigation of antimicrobial potential of strains from 

the Armenian National Collection of Cultures. This 

research is essential for the prospective development of 

cost-effective and efficient biopreparations targeting 

phytopathogens, based on local Armenian strains.  

Genetic and biochemical analyses have revealed the 

presence of plasmid-encoded lipases, nucleoid-

associated PPOs, caseinase, and gelatinase. They are 

associated with biodegradative capacities and AMR of 

Strain Antibiotic-resistance (50 mcg/mL)  

С Azm Stp Gnc Kan Amc Amx Amp Pcn Cip Lfx Tcn Cfx Cro Cam 

9072 - R - - - R R R - - - R R R + 

9085 R - - - R R R R - - R R - - + 

9089 R - - - R R R R - - R R R - + 

9090 R - - - R R R R - - - R R - + 

9091 - R - - R R R R - - - - - R + 

9092 - - - - R R R R - - - R - R + 

9094 - - - - R R R R - - R R - - + 

9138 - R - R - - R R R R R R R - + 
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both species [37]. The identified plasmids were not 

transmitted to P. carotovorum, due to differences in their 

replication control, which minimizes potential risks for 

their native microbiome. Furthermore, residual and trace 

concentrations of antibiotics, such as tetracycline, and 

other contaminants in soil can be biodegraded by these 

enzymes [38]. The application of P. fluorescens might be 

suitable for soil remediation and facilitate its fertility 

increase during the transition period from conventional 

to green agrarian technologies development. Also, it 

could be used in zones of technogenic pollution, 

including in demilitarized zones, areas affected by 

industrial activity, or exclusion zones of the abandoned 

mines and factories, etc. [39]. 

 

Prospectives of Application in Functionalization of 

Foods: P. fluorescens enzymatic profile suggests 

potential utility in the functionalization of fruits and 

vegetables, through the modulation of their metabolism 

during the cultivation by the shifts in biosynthesis of 

pigments, alkaloid, etc. bioactive compound with target 

effects [40]. Potentially, it might offer the breeding of 

some hypoallergenic varieties of fruits and vegetables. 

Thus, P. fluorescens’ presence in environment during 

cultivation offers several advantages. It not only 

suppresses the growth of phytopathogens but also 

induces native defense mechanisms of plants. 

Specifically, P. fluorescens induces systemic resistance in 

plants, boosting their immunity, mediated by some 

secondary metabolites: antioxidants (antioxidant status 

increase), vitamins, anthocyanins, lycopene, etc. For 

example, the increased levels of lycopene, vitamin C and 

other antioxidants are shown for Solanum lycopersicum 

(tomatoes), cultivated with P. fluorescens. Its presence in 

rhizosphere of Rubus fruticosus (blackberry) activates the 

genes responsible for the antioxidant status increase by 

the flavonoids and anthocyanins biosynthesis 

upregulation [41]. Additionally, P. fluorescens produces 

Fe-chelating compounds (siderophores), pyoverdine and  

pyochelin, which enhance iron uptake by plants. This 

increases Fe content in the edible parts, effectively 

addressing Fe deficiency, as an important part of plant 

protection. It also may induce biosynthesis of 

phytohormones (auxins, cytokinins, gibberellins), which 

stimulates overall plant growth and fruiting, as well as 

increase the content of valuable nutrients in fruits. Thus, 

P. fluorescence might offer the targeted functionalization 

of crops by increasing the content of specific bioactive 

compounds in them. Their consumption has the potential 

to be beneficial in cases of anemia, vitamin deficiencies, 

and other nutrient insufficiencies [42].  

In addition, P. fluorescens synthesizes 2,4-

diacetylphloroglucinol (DAPG), pyrrolnitrin, and 

phenazines, which inhibit pathogenic microflora not only 

in the soil, but also on various parts of plants during its 

development. Thus, food functionalization by the 

influence of P. fluorescens is also possible through its 

impact on the post-germination microbiota. The 

presence of P. fluorescens influences the surface 

microflora of fruits, what inhibits the spoilage, promotes 

natural fermentation (if the product undergoes 

fermentation during the manufacturing process). Also, it 

promotes the formation of probiotic coating that may be 

beneficial when consumed [4-,44].  

Thus, P. fluorescens application might offer the 

functional microbiome formation that enhances fruit 

resistance to spoilage and extends the shelf life and 

transportability of agricultural products (e.g.: combating 

green mold in citrus fruits, caused by Penicillium 

digitatum) [45].  

Moreover, P. fluorescens reduces the residual 

concentrations of certain pesticides and fertilizers 

remaining in the soil from previous applications because 

of biodegradation capabilities [46-49]. Also, it’s able to 

turn the residual concentrations of Zn, Fe, Ag, and Mn in 

soil into green nano-particles with beneficial properties, 

what additionally fertilizes the cultivating plants [50-51].  
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CONCLUSION. 

P. fluorescens application as an eco-friendly 

antiphytopathogenic biocontrol agent holds a significant 

potential for food quality improvement and its targeted 

functionalization of fruits and vegetables. The strains 

from RA collection have a significant potential as novel 

pest control green agent, useful also for soil remediation 

and re-fertilization. Thus, P. fluorescens is recommended 

for further detailed research as potential green agent of 

complex beneficial influence on crops.  
 

Abbreviations: Amc, Amoxiclav; Ampicillin/Amp; AMR, 

antimicrobial resistance; Amx, Amoxicillin; Azm, 

Azithromycin; Cam, Chloramphenicol; Cfx, Сefixime; Cip, 

Ciprofloxacin; Cro, Ceftriaxone; DAPG, 2,4-

diacetylphloroglucinol; FTIR-ATR, Fourier Transform 

Infrared Spectroscopy by Attenuated Total Reflectance; 

Gnc, Gentamicin; Kan, Kanamycin; Lfx, Levofloxacin; 

MDC, Microbial Depository; NAS RA, National Academy 

of Sciences, Republic of Armenia; Pcn, Penicillin; PPO, 

polyphenol oxidases; SPC, Scientific and Production 

Center; Stp/Streptomycin; Tcn, Tetracycline; L-Tyr, L-

Tyrosine; UV/Vis – Ultraviolet and Visual. 
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